Nuprl Lemma : rnonzero_wf
∀[x:ℕ+ ⟶ ℤ]. (rnonzero(x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rnonzero: rnonzero(x)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rnonzero: rnonzero(x)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_plus_wf, 
less_than_wf, 
absval_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality
Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  (rnonzero(x)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_53_50
Last ObjectModification:
2015_12_28-AM-00_31_11
Theory : reals
Home
Index