Nuprl Lemma : continuous-abs
∀[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈ I ⇒ |f[x]| continuous for x ∈ I)
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rabs: |x|, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
label: ...$L... t
Lemmas referenced : 
rabs-as-rmax, 
continuous-max, 
real_wf, 
i-member_wf, 
rminus_wf, 
continuous-minus, 
continuous_wf, 
rfun_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setEquality, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  |f[x]|  continuous  for  x  \mmember{}  I)
Date html generated:
2016_05_18-AM-09_11_59
Last ObjectModification:
2015_12_27-PM-11_28_07
Theory : reals
Home
Index