Nuprl Lemma : continuous-max

[I:Interval]. ∀[f,g:I ⟶ℝ].
  (f[x] continuous for x ∈  g[x] continuous for x ∈  rmax(f[x];g[x]) continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rmax: rmax(x;y) uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q continuous: f[x] continuous for x ∈ I all: x:A. B[x] member: t ∈ T sq_exists: x:{A| B[x]} and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a rge: x ≥ y guard: {T} nat_plus: + rneq: x ≠ y or: P ∨ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top uiff: uiff(P;Q)
Lemmas referenced :  rabs-difference-rmax rmax_lb int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf rmax_wf less_than_wf all_wf int-to-real_wf rless_wf rleq_weakening_equal rleq_functionality_wrt_implies i-member-approx rmin-rleq interval_wf rfun_wf continuous_wf icompact_wf set_wf nat_plus_wf real_wf i-approx_wf i-member_wf rsub_wf rabs_wf rleq_wf rmin_strict_ub rmin_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberFormation lemma_by_obid isectElimination productElimination because_Cache independent_functionElimination independent_pairFormation sqequalRule lambdaEquality applyEquality setEquality dependent_set_memberEquality independent_isectElimination equalityTransitivity equalitySymmetry productEquality natural_numberEquality functionEquality inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  rmax(f[x];g[x])  continuous  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_11_28
Last ObjectModification: 2016_01_17-AM-02_39_25

Theory : reals


Home Index