Nuprl Lemma : iproper-riiint
iproper((-∞, ∞))
Proof
Definitions occuring in Statement : 
riiint: (-∞, ∞), 
iproper: iproper(I)
Definitions unfolded in proof : 
iproper: iproper(I), 
i-finite: i-finite(I), 
riiint: (-∞, ∞), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
implies: P ⇒ Q, 
and: P ∧ Q, 
false: False, 
member: t ∈ T, 
prop: ℙ
Lemmas referenced : 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
voidElimination, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
iproper((-\minfty{},  \minfty{}))
 Date html generated: 
2016_10_26-AM-09_29_26
 Last ObjectModification: 
2016_08_27-PM-09_59_47
Theory : reals
Home
Index