Nuprl Lemma : iproper-riiint
iproper((-∞, ∞))
Proof
Definitions occuring in Statement : 
riiint: (-∞, ∞)
, 
iproper: iproper(I)
Definitions unfolded in proof : 
iproper: iproper(I)
, 
i-finite: i-finite(I)
, 
riiint: (-∞, ∞)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
voidElimination, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
iproper((-\minfty{},  \minfty{}))
Date html generated:
2016_10_26-AM-09_29_26
Last ObjectModification:
2016_08_27-PM-09_59_47
Theory : reals
Home
Index