Nuprl Lemma : iproper-riiint

iproper((-∞, ∞))


Proof




Definitions occuring in Statement :  riiint: (-∞, ∞) iproper: iproper(I)
Definitions unfolded in proof :  iproper: iproper(I) i-finite: i-finite(I) riiint: (-∞, ∞) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff implies:  Q and: P ∧ Q false: False member: t ∈ T prop:
Lemmas referenced :  false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule lambdaFormation sqequalHypSubstitution productElimination thin voidElimination productEquality cut introduction extract_by_obid hypothesis

Latex:
iproper((-\minfty{},  \minfty{}))



Date html generated: 2016_10_26-AM-09_29_26
Last ObjectModification: 2016_08_27-PM-09_59_47

Theory : reals


Home Index