Nuprl Lemma : derivative-id

[I:Interval]. λx.r1 d(x)/dx on I


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I interval: Interval int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rless: x < y or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + so_lambda: λ2x.t[x] prop: true: True less_than': less_than'(a;b) squash: T less_than: a < b implies:  Q rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B and: P ∧ Q member: t ∈ T sq_exists: x:{A| B[x]} all: x:A. B[x] derivative: λz.g[z] d(f[x])/dx on I uall: [x:A]. B[x] uiff: uiff(P;Q) nat: subtype_rel: A ⊆B rsub: y absval: |i| rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) real:
Lemmas referenced :  rleq_functionality rmul-nonneg-case1 rleq-int-fractions2 sq_stable__less_than sq_stable__icompact decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma zero-rleq-rabs rabs-abs radd-zero-both rminus-zero rmul-zero-both radd-int rmul_functionality rminus-as-rmul rmul-distrib2 rmul-identity1 radd-ac radd-assoc req_inversion rminus-radd rmul-one-both req_weakening rmul_over_rminus rmul-distrib req_transitivity rminus_functionality radd_functionality rabs_functionality req_functionality uiff_transitivity req_wf radd_wf rminus_wf absval_wf nat_wf req-int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma int-to-real_wf rless-int rleq_wf rabs_wf rsub_wf i-member_wf i-approx_wf real_wf rless_wf all_wf less_than_wf rmul_wf rdiv_wf nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf set_wf nat_plus_wf icompact_wf interval_wf
Rules used in proof :  computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination inrFormation independent_isectElimination dependent_set_memberEquality functionEquality because_Cache lambdaEquality productEquality rename setElimination baseClosed hypothesisEquality imageMemberEquality introduction independent_pairFormation sqequalRule independent_functionElimination productElimination dependent_functionElimination hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut dependent_set_memberFormation lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality addEquality minusEquality multiplyEquality imageElimination

Latex:
\mforall{}[I:Interval].  \mlambda{}x.r1  =  d(x)/dx  on  I



Date html generated: 2016_05_18-AM-10_06_01
Last ObjectModification: 2016_01_17-AM-00_39_15

Theory : reals


Home Index