Nuprl Lemma : derivative-rdiv-const

a:ℝ(a ≠ r0  (∀I:Interval. ∀f,f':I ⟶ℝ.  x.f'[x] d(f[x])/dx on  λx.(f'[x]/a) d((f[x]/a))/dx on I)))


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I rfun: I ⟶ℝ interval: Interval rdiv: (x/y) rneq: x ≠ y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rdiv: (x/y) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] prop: label: ...$L... t
Lemmas referenced :  derivative-const-mul2 rinv_wf2 real_wf i-member_wf derivative_wf rfun_wf interval_wf rneq_wf int-to-real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality independent_functionElimination hypothesis lambdaEquality applyEquality setEquality because_Cache natural_numberEquality

Latex:
\mforall{}a:\mBbbR{}
    (a  \mneq{}  r0
    {}\mRightarrow{}  (\mforall{}I:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.
                (\mlambda{}x.f'[x]  =  d(f[x])/dx  on  I  {}\mRightarrow{}  \mlambda{}x.(f'[x]/a)  =  d((f[x]/a))/dx  on  I)))



Date html generated: 2016_05_18-AM-10_13_18
Last ObjectModification: 2015_12_27-PM-10_58_35

Theory : reals


Home Index