Nuprl Lemma : fact_wf

[n:ℕ]. ((n)! ∈ ℕ+)


Proof




Definitions occuring in Statement :  fact: (n)! nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) guard: {T} bfalse: ff subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf fact_unroll subtract-1-ge-0 lt_int_wf eqtt_to_assert assert_of_lt_int nat_plus_properties eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf mul_nat_plus nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  imageMemberEquality baseClosed because_Cache unionElimination equalityElimination productElimination applyLambdaEquality Error :equalityIsType2,  baseApply closedConclusion applyEquality promote_hyp instantiate cumulativity Error :equalityIsType1

Latex:
\mforall{}[n:\mBbbN{}].  ((n)!  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2019_06_20-PM-02_30_10
Last ObjectModification: 2018_10_05-PM-11_31_46

Theory : num_thy_1


Home Index