Nuprl Lemma : derivative-rnexp

n:ℕ+. ∀I:Interval.  d(x^n)/dx = λx.r(n) x^n on I


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I interval: Interval rnexp: x^k1 rmul: b int-to-real: r(n) nat_plus: + all: x:A. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + implies:  Q prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B subtract: m le: A ≤ B less_than': less_than'(a;b) itermConstant: "const" req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermMultiply: left (*) right uiff: uiff(P;Q) rfun-eq: rfun-eq(I;f;g) r-ap: f(x) rev_uimplies: rev_uimplies(P;Q) itermVar: vvar itermAdd: left (+) right
Lemmas referenced :  interval_wf nat_plus_properties all_wf derivative_wf rnexp_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf real_wf i-member_wf rmul_wf int-to-real_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_plus_wf primrec-wf-nat-plus nat_plus_subtype_nat rnexp_zero_lemma derivative-id false_wf set_wf real_term_polynomial itermMultiply_wf req-iff-rsub-is-0 derivative_functionality rpower-one req_functionality req_weakening derivative-mul rmul_functionality rnexp_functionality req_wf itermAdd_wf int_term_value_add_lemma radd_wf add-subtract-cancel rnexp-add req_inversion subtract-add-cancel req_transitivity radd_functionality radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis thin rename sqequalHypSubstitution isectElimination hypothesisEquality setElimination sqequalRule lambdaEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll setEquality because_Cache applyEquality productElimination independent_functionElimination functionEquality addEquality comment

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}I:Interval.    d(x\^{}n)/dx  =  \mlambda{}x.r(n)  *  x\^{}n  -  1  on  I



Date html generated: 2017_10_03-PM-00_13_43
Last ObjectModification: 2017_07_28-AM-08_36_35

Theory : reals


Home Index