Nuprl Lemma : derivative-rnexp
∀n:ℕ+. ∀I:Interval.  d(x^n)/dx = λx.r(n) * x^n - 1 on I
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
interval: Interval
, 
rnexp: x^k1
, 
rmul: a * b
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
real_term_value: real_term_value(f;t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
itermMultiply: left (*) right
, 
uiff: uiff(P;Q)
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
itermVar: vvar
, 
itermAdd: left (+) right
Lemmas referenced : 
interval_wf, 
nat_plus_properties, 
all_wf, 
derivative_wf, 
rnexp_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
real_wf, 
i-member_wf, 
rmul_wf, 
int-to-real_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_plus_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
rnexp_zero_lemma, 
derivative-id, 
false_wf, 
set_wf, 
real_term_polynomial, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
derivative_functionality, 
rpower-one, 
req_functionality, 
req_weakening, 
derivative-mul, 
rmul_functionality, 
rnexp_functionality, 
req_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
radd_wf, 
add-subtract-cancel, 
rnexp-add, 
req_inversion, 
subtract-add-cancel, 
req_transitivity, 
radd_functionality, 
radd-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
rename, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
setElimination, 
sqequalRule, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
because_Cache, 
applyEquality, 
productElimination, 
independent_functionElimination, 
functionEquality, 
addEquality, 
comment
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}I:Interval.    d(x\^{}n)/dx  =  \mlambda{}x.r(n)  *  x\^{}n  -  1  on  I
Date html generated:
2017_10_03-PM-00_13_43
Last ObjectModification:
2017_07_28-AM-08_36_35
Theory : reals
Home
Index