Nuprl Lemma : rnexp-add

[n,m:ℕ]. ∀[x:ℝ].  ((x^n x^m) x^n m)


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b real: nat: uall: [x:A]. B[x] add: m
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 so_apply: x[s] so_lambda: λ2x.t[x] nequal: a ≠ b ∈  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real_term_value_const_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null req_inversion req-iff-rsub-is-0 itermMultiply_wf general_arith_equation1 rmul_comm rmul-one decidable__equal_int int_subtype_base set_subtype_base rnexp_unroll rmul_functionality int_formula_prop_eq_lemma intformeq_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf req_functionality req_weakening zero-add rmul-identity1 int-to-real_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf rnexp_zero_lemma less_than_wf ge_wf int_formula_prop_less_lemma intformless_wf nat_wf real_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties rnexp_wf rmul_wf req_witness
Rules used in proof :  cumulativity instantiate promote_hyp equalitySymmetry equalityTransitivity equalityElimination productElimination lambdaFormation intWeakElimination because_Cache independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality dependent_functionElimination rename setElimination addEquality dependent_set_memberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    ((x\^{}n  *  x\^{}m)  =  x\^{}n  +  m)



Date html generated: 2018_05_22-PM-01_32_46
Last ObjectModification: 2018_05_21-AM-00_07_23

Theory : reals


Home Index