Nuprl Lemma : rpower-one
∀[x:ℝ]. (x^1 = x)
Proof
Definitions occuring in Statement :
rnexp: x^k1
,
req: x = y
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
rnexp1,
req_witness,
rnexp_wf,
false_wf,
le_wf,
real_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation,
independent_functionElimination
Latex:
\mforall{}[x:\mBbbR{}]. (x\^{}1 = x)
Date html generated:
2016_05_18-AM-07_20_12
Last ObjectModification:
2015_12_28-AM-00_47_31
Theory : reals
Home
Index