Nuprl Lemma : derivative-const
∀[I:Interval]. ∀[c:ℝ].  d(c)/dx = λx.r0 on I
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
interval: Interval
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
absval: |i|
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real: ℝ
, 
sq_stable: SqStable(P)
Lemmas referenced : 
int-to-real_wf, 
rless-int, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
i-member_wf, 
i-approx_wf, 
less_than_wf, 
rless_wf, 
all_wf, 
real_wf, 
rmul_wf, 
rdiv_wf, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
set_wf, 
nat_plus_wf, 
icompact_wf, 
iproper_wf, 
interval_wf, 
req_wf, 
absval_wf, 
nat_wf, 
req-int, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
uiff_transitivity2, 
req_functionality, 
rabs_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
req-iff-rsub-is-0, 
req_weakening, 
squash_wf, 
true_wf, 
rabs-int, 
rmul-nonneg-case1, 
rleq-int-fractions2, 
sq_stable__less_than, 
sq_stable__and, 
sq_stable__icompact, 
sq_stable__iproper, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
zero-rleq-rabs, 
rleq_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_set_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
dependent_set_memberEquality, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
lambdaEquality, 
functionEquality, 
independent_isectElimination, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
minusEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
multiplyEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[c:\mBbbR{}].    d(c)/dx  =  \mlambda{}x.r0  on  I
Date html generated:
2017_10_03-PM-00_11_15
Last ObjectModification:
2017_07_28-AM-08_35_27
Theory : reals
Home
Index