Nuprl Lemma : rdiv-rdiv
∀[x,a,b:ℝ].  (((x/a)/b) = (x/a * b)) supposing (b ≠ r0 and a ≠ r0)
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermDivide: num "/" denom, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var), 
rtermMultiply: left "*" right, 
pi1: fst(t), 
and: P ∧ Q, 
true: True, 
all: ∀x:A. B[x], 
pi2: snd(t), 
prop: ℙ
Lemmas referenced : 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermVar_wf, 
rtermMultiply_wf, 
int-to-real_wf, 
istype-int, 
rmul-neq-zero, 
req_witness, 
rdiv_wf, 
rmul_wf, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
lambdaEquality_alt, 
int_eqEquality, 
hypothesisEquality, 
independent_isectElimination, 
approximateComputation, 
sqequalRule, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[x,a,b:\mBbbR{}].    (((x/a)/b)  =  (x/a  *  b))  supposing  (b  \mneq{}  r0  and  a  \mneq{}  r0)
Date html generated:
2019_10_29-AM-09_57_21
Last ObjectModification:
2019_04_01-PM-07_11_02
Theory : reals
Home
Index