Nuprl Lemma : derivative-rsum

[I:Interval]
  ∀n:ℕ. ∀m:{n...}.
    ∀[f,f':{n..m 1-} ⟶ I ⟶ℝ].
      ((∀k:{n..m 1-}. d(f[k;x])/dx = λx.f'[k;x] on I)  d(Σ{f[k;x] n≤k≤m})/dx = λx.Σ{f'[k;x] n≤k≤m} on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I rfun: I ⟶ℝ interval: Interval rsum: Σ{x[k] n≤k≤m} int_upper: {i...} int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) r-ap: f(x) rfun-eq: rfun-eq(I;f;g) nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] subtype_rel: A ⊆B so_apply: x[s1;s2] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2x.t[x] int_upper: {i...} nat: prop: member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  trivial-int-eq1 decidable__equal_int int_subtype_base derivative-add rsum_unroll req_functionality derivative_functionality req_weakening int_formula_prop_eq_lemma intformeq_wf int_seg_properties radd_wf neg_assert_of_eq_int assert_of_eq_int eq_int_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int-to-real_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf decidable__le primrec-wf2 less_than_wf set_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermSubtract_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties int_upper_properties rsum_wf subtract_wf le_wf interval_wf nat_wf int_upper_wf rfun_wf i-member_wf real_wf subtype_rel_self derivative_wf int_seg_wf all_wf
Rules used in proof :  cumulativity promote_hyp equalitySymmetry equalityTransitivity equalityElimination instantiate voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination independent_pairFormation productElimination dependent_set_memberEquality functionExtensionality setEquality functionEquality applyEquality hypothesisEquality lambdaEquality sqequalRule natural_numberEquality addEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval]
    \mforall{}n:\mBbbN{}.  \mforall{}m:\{n...\}.
        \mforall{}[f,f':\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].
            ((\mforall{}k:\{n..m  +  1\msupminus{}\}.  d(f[k;x])/dx  =  \mlambda{}x.f'[k;x]  on  I)
            {}\mRightarrow{}  d(\mSigma{}\{f[k;x]  |  n\mleq{}k\mleq{}m\})/dx  =  \mlambda{}x.\mSigma{}\{f'[k;x]  |  n\mleq{}k\mleq{}m\}  on  I)



Date html generated: 2018_05_22-PM-02_45_43
Last ObjectModification: 2018_05_21-AM-00_54_12

Theory : reals


Home Index