Nuprl Lemma : derivative-add

[I:Interval]. ∀[f1,f2,g1,g2:I ⟶ℝ].
  (d(f1[x])/dx = λx.g1[x] on  d(f2[x])/dx = λx.g2[x] on  d(f1[x] f2[x])/dx = λx.g1[x] g2[x] on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I rfun: I ⟶ℝ interval: Interval radd: b uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q derivative: d(f[x])/dx = λz.g[z] on I all: x:A. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: sq_exists: x:{A| B[x]} cand: c∧ B iff: ⇐⇒ Q so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rsub: y uiff: uiff(P;Q) subtype_rel: A ⊆B real: sq_stable: SqStable(P)
Lemmas referenced :  mul_nat_plus less_than_wf rmin_wf rmin_strict_ub i-member-approx rleq_wf rabs_wf rsub_wf i-member_wf i-approx_wf real_wf set_wf nat_plus_wf icompact_wf iproper_wf derivative_wf rfun_wf interval_wf rless_wf int-to-real_wf all_wf radd_wf rmul_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rmin-rleq rleq_functionality_wrt_implies rleq_weakening_equal equal_wf req_wf rminus_wf req_weakening uiff_transitivity req_functionality radd_functionality rminus_functionality req_transitivity rmul-distrib rmul_over_rminus rminus-radd req_inversion radd-assoc radd-ac radd_comm rmul_functionality rminus-as-rmul rminus-rminus rleq_functionality rabs_functionality itermMultiply_wf int_term_value_mul_lemma rleq_transitivity r-triangle-inequality radd_functionality_wrt_rleq rmul-distrib2 radd-rdiv rdiv_functionality radd-int rleq-int-fractions sq_stable__less_than sq_stable__and sq_stable__icompact sq_stable__iproper decidable__le intformle_wf int_formula_prop_le_lemma rleq-int-fractions2 zero-rleq-rabs rmul_functionality_wrt_rleq2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin introduction extract_by_obid isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed setElimination rename dependent_set_memberFormation productElimination because_Cache independent_functionElimination lambdaEquality productEquality applyEquality setEquality functionEquality independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry minusEquality multiplyEquality addEquality imageElimination inlFormation

Latex:
\mforall{}[I:Interval].  \mforall{}[f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}].
    (d(f1[x])/dx  =  \mlambda{}x.g1[x]  on  I
    {}\mRightarrow{}  d(f2[x])/dx  =  \mlambda{}x.g2[x]  on  I
    {}\mRightarrow{}  d(f1[x]  +  f2[x])/dx  =  \mlambda{}x.g1[x]  +  g2[x]  on  I)



Date html generated: 2017_10_03-PM-00_08_44
Last ObjectModification: 2017_07_28-AM-08_34_15

Theory : reals


Home Index