Nuprl Lemma : derivative-sub

I:Interval. ∀f1,f2,g1,g2:I ⟶ℝ.
  x.g1[x] d(f1[x])/dx on  λx.g2[x] d(f2[x])/dx on  λx.g1[x] g2[x] d(f1[x] f2[x])/dx on I)


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I rfun: I ⟶ℝ interval: Interval rsub: y so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rsub: y member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s]
Lemmas referenced :  derivative_wf real_wf i-member_wf rfun_wf interval_wf rminus_wf derivative-add derivative-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality setEquality hypothesis because_Cache independent_functionElimination dependent_functionElimination

Latex:
\mforall{}I:Interval.  \mforall{}f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}.
    (\mlambda{}x.g1[x]  =  d(f1[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g2[x]  =  d(f2[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g1[x]  -  g2[x]  =  d(f1[x]  -  f2[x])/dx  on  I)



Date html generated: 2016_05_18-AM-10_07_22
Last ObjectModification: 2015_12_27-PM-11_03_18

Theory : reals


Home Index