Nuprl Lemma : derivative-minus

I:Interval. ∀f,g:I ⟶ℝ.  x.g[x] d(f[x])/dx on  λx.-(g[x]) d(-(f[x]))/dx on I)


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I rfun: I ⟶ℝ interval: Interval rminus: -(x) so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] uimplies: supposing a rfun-eq: rfun-eq(I;f;g) r-ap: f(x) uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  derivative-const-mul int-to-real_wf derivative_wf real_wf i-member_wf rfun_wf interval_wf rmul_wf rminus_wf req_wf req_weakening set_wf derivative_functionality uiff_transitivity req_functionality rminus-as-rmul req_inversion
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin isectElimination minusEquality natural_numberEquality hypothesis lambdaFormation hypothesisEquality independent_functionElimination sqequalRule lambdaEquality applyEquality setEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.    (\mlambda{}x.g[x]  =  d(f[x])/dx  on  I  {}\mRightarrow{}  \mlambda{}x.-(g[x])  =  d(-(f[x]))/dx  on  I)



Date html generated: 2016_05_18-AM-10_07_08
Last ObjectModification: 2015_12_27-PM-11_03_44

Theory : reals


Home Index