Nuprl Lemma : derivative-minus
∀I:Interval. ∀f,g:I ⟶ℝ.  (λx.g[x] = d(f[x])/dx on I ⇒ λx.-(g[x]) = d(-(f[x]))/dx on I)
Proof
Definitions occuring in Statement : 
derivative: λz.g[z] = d(f[x])/dx on I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rminus: -(x), 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
uimplies: b supposing a, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
derivative-const-mul, 
int-to-real_wf, 
derivative_wf, 
real_wf, 
i-member_wf, 
rfun_wf, 
interval_wf, 
rmul_wf, 
rminus_wf, 
req_wf, 
req_weakening, 
set_wf, 
derivative_functionality, 
uiff_transitivity, 
req_functionality, 
rminus-as-rmul, 
req_inversion
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
lambdaFormation, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.    (\mlambda{}x.g[x]  =  d(f[x])/dx  on  I  {}\mRightarrow{}  \mlambda{}x.-(g[x])  =  d(-(f[x]))/dx  on  I)
Date html generated:
2016_05_18-AM-10_07_08
Last ObjectModification:
2015_12_27-PM-11_03_44
Theory : reals
Home
Index