Nuprl Lemma : derivative-const-mul

a:ℝ. ∀I:Interval. ∀f,g:I ⟶ℝ.  (d(f[x])/dx = λx.g[x] on  d(a f[x])/dx = λx.a g[x] on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I rfun: I ⟶ℝ interval: Interval rmul: b real: so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q derivative: d(f[x])/dx = λz.g[z] on I uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ nat_plus: + sq_exists: x:{A| B[x]} uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) true: True sq_type: SQType(T) nequal: a ≠ b ∈  rge: x ≥ y
Lemmas referenced :  r-bound-property mul_nat_plus r-bound_wf set_wf nat_plus_wf icompact_wf i-approx_wf iproper_wf derivative_wf i-member_wf real_wf rfun_wf interval_wf rleq_wf rabs_wf rsub_wf less_than_wf i-member-approx rless_wf int-to-real_wf all_wf rmul_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf req_wf radd_wf rminus_wf req_weakening uiff_transitivity req_functionality radd_functionality rminus_functionality req_transitivity rmul-distrib rmul_over_rminus rmul_functionality req_inversion rmul-assoc rmul_comm rminus-radd radd-assoc radd-ac radd_comm rminus-as-rmul rmul-ac rminus-rminus rleq_functionality rabs_functionality rabs-rmul rabs-as-rmax rmax_lb rmul_reverses_rleq_iff subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermMultiply_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_minus_lemma rmul-int rmul-minus rmul-one-both mul_bounds_1b zero-rleq-rabs rmul-nonneg-case1 rneq-int int_entire_a equal-wf-base rleq-int-fractions2 decidable__le intformle_wf int_formula_prop_le_lemma rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 rleq_weakening_equal rleq-int-fractions rmul-int-rdiv rleq-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis productElimination sqequalRule lambdaEquality productEquality applyEquality setElimination rename dependent_set_memberEquality setEquality because_Cache independent_pairFormation promote_hyp independent_functionElimination natural_numberEquality functionEquality independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry minusEquality imageMemberEquality baseClosed multiplyEquality instantiate cumulativity inlFormation

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.    (d(f[x])/dx  =  \mlambda{}x.g[x]  on  I  {}\mRightarrow{}  d(a  *  f[x])/dx  =  \mlambda{}x.a  *  g[x]  on  I)



Date html generated: 2017_10_03-PM-00_11_49
Last ObjectModification: 2017_07_28-AM-08_35_42

Theory : reals


Home Index