Step * of Lemma derivative-Taylor-approx

I:Interval
  (iproper(I)
   (∀n:ℕ. ∀F:ℕ2 ⟶ I ⟶ℝ. ∀b:{a:ℝa ∈ I} .
        ((∀k:ℕ2. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (F[k;x] F[k;y])))
         finite-deriv-seq(I;n 1;i,x.F[i;x])
         d(Taylor-approx(n;a;b;i,x.F[i;x]))/da = λx.b x^n (F[n 1;x]/r((n)!)) on I)))
BY
TACTIC:(Auto THEN Unfold `Taylor-approx` 0) }

1
1. Interval
2. iproper(I)
3. : ℕ
4. : ℕ2 ⟶ I ⟶ℝ
5. {a:ℝa ∈ I} 
6. ∀k:ℕ2. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (F[k;x] F[k;y]))
7. finite-deriv-seq(I;n 1;i,x.F[i;x])
⊢ d(Σ{(F[k;a]/r((k)!)) a^k 0≤k≤n})/da = λx.b x^n (F[n 1;x]/r((n)!)) on I


Latex:


Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  d(Taylor-approx(n;a;b;i,x.F[i;x]))/da  =  \mlambda{}x.b  -  x\^{}n  *  (F[n  +  1;x]/r((n)!))  on  I)))


By


Latex:
TACTIC:(Auto  THEN  Unfold  `Taylor-approx`  0)




Home Index