Nuprl Lemma : Rolles-theorem
∀a,b:ℝ.
  ((a < b)
  
⇒ (∀f,f':[a, b] ⟶ℝ.
        (f'[x] continuous for x ∈ [a, b]
        
⇒ d(f[x])/dx = λx.f'[x] on [a, b]
        
⇒ (f[a] = f[b])
        
⇒ (∀e:ℝ. ((r0 < e) 
⇒ (∃x:ℝ. ((x ∈ [a, b]) ∧ (|f'[x]| ≤ e))))))))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
prop: ℙ
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
guard: {T}
, 
label: ...$L... t
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
inf: inf(A) = b
, 
lower-bound: lower-bound(A;b)
, 
rrange: f[x](x∈I)
, 
rset-member: x ∈ A
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
i-approx: i-approx(I;n)
, 
iproper: iproper(I)
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
le: A ≤ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
real_term_value: real_term_value(f;t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
itermVar: vvar
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rge: x ≥ y
, 
rsub: x - y
, 
rdiv: (x/y)
Lemmas referenced : 
continuous-abs, 
rccint_wf, 
i-member_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
req_wf, 
member_rccint_lemma, 
rleq_weakening_equal, 
rleq_weakening_rless, 
rleq_wf, 
derivative_wf, 
continuous_wf, 
rfun_wf, 
rccint-icompact, 
not-rless, 
range-inf_wf, 
rabs_wf, 
small-reciprocal-real, 
range-inf-property, 
icompact_wf, 
req_weakening, 
rless_transitivity1, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
all_wf, 
rabs-nonzero-on-compact, 
mul_nat_plus, 
less_than_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
i-finite_wf, 
simple-partition-exists, 
rsum-telescopes, 
subtract_wf, 
sq_stable__less_than, 
decidable__le, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
int_seg_wf, 
add-member-int_seg2, 
subtract-add-cancel, 
add-subtract-cancel, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
rsum_wf, 
rsub_wf, 
false_wf, 
req_functionality, 
squash_wf, 
true_wf, 
equal_wf, 
iff_weakening_equal, 
real_term_polynomial, 
req-iff-rsub-is-0, 
rsub_functionality, 
rsum_linearity1, 
rmul_wf, 
rsum_functionality, 
radd_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req_inversion, 
req_transitivity, 
rabs-rsum, 
rsum_functionality_wrt_rleq, 
int_seg_properties, 
int_term_value_mul_lemma, 
set_wf, 
less_than'_wf, 
nat_plus_wf, 
radd-preserves-rleq, 
sq_stable__and, 
sq_stable__rleq, 
rleq_functionality, 
rabs-of-nonneg, 
rleq_functionality_wrt_implies, 
rsum_linearity2, 
rmul_functionality, 
rmul_functionality_wrt_rleq2, 
radd-zero-both, 
radd-rminus-both, 
radd_functionality, 
radd-ac, 
radd_comm, 
uiff_transitivity, 
rminus_wf, 
rleq-int-fractions2, 
sq_stable__i-member, 
rmul_preserves_rleq2, 
or_wf, 
rless-implies-rless, 
radd-preserves-req, 
itermMinus_wf, 
real_term_value_minus_lemma, 
radd_comm_eq, 
uiff_transitivity2, 
rabs_functionality, 
rabs-rminus, 
rless-int-fractions, 
rabs-bounds, 
rleq-rmax, 
rabs-as-rmax, 
rmul_preserves_rless, 
rinv_wf2, 
rless_functionality, 
rinv-mul-as-rdiv, 
rminus_functionality, 
rless_irreflexivity, 
rmul_reverses_rleq, 
rleq-int, 
radd_functionality_wrt_rleq, 
rless_functionality_wrt_implies, 
rleq_weakening, 
rless_transitivity2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
setEquality, 
independent_functionElimination, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
productEquality, 
productElimination, 
dependent_pairFormation, 
inrFormation, 
unionElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
addEquality, 
imageElimination, 
functionExtensionality, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
levelHypothesis, 
multiplyEquality, 
minusEquality, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
inlFormation, 
isect_memberFormation, 
orFunctionality, 
promote_hyp, 
comment, 
orLevelFunctionality
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
                (f'[x]  continuous  for  x  \mmember{}  [a,  b]
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  [a,  b]
                {}\mRightarrow{}  (f[a]  =  f[b])
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  \mwedge{}  (|f'[x]|  \mleq{}  e))))))))
Date html generated:
2017_10_03-PM-00_20_46
Last ObjectModification:
2017_07_28-AM-08_39_54
Theory : reals
Home
Index