Nuprl Lemma : Rolles-theorem

a,b:ℝ.
  ((a < b)
   (∀f,f':[a, b] ⟶ℝ.
        (f'[x] continuous for x ∈ [a, b]
         d(f[x])/dx = λx.f'[x] on [a, b]
         (f[a] f[b])
         (∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ [a, b]) ∧ (|f'[x]| ≤ e))))))))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rless: x < y rabs: |x| req: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] prop: top: Top and: P ∧ Q cand: c∧ B uimplies: supposing a guard: {T} label: ...$L... t iff: ⇐⇒ Q not: ¬A exists: x:A. B[x] inf: inf(A) b lower-bound: lower-bound(A;b) rrange: f[x](x∈I) rset-member: x ∈ A i-member: r ∈ I rccint: [l, u] nat_plus: + rneq: x ≠ y or: P ∨ Q rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False derivative: d(f[x])/dx = λz.g[z] on I less_than: a < b squash: T less_than': less_than'(a;b) true: True i-approx: i-approx(I;n) iproper: iproper(I) int_upper: {i...} subtype_rel: A ⊆B real: sq_stable: SqStable(P) int_seg: {i..j-} uiff: uiff(P;Q) lelt: i ≤ j < k subtract: m le: A ≤ B rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermVar: vvar pointwise-req: x[k] y[k] for k ∈ [n,m] pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rleq: x ≤ y rnonneg: rnonneg(x) rge: x ≥ y rsub: y rdiv: (x/y)
Lemmas referenced :  continuous-abs rccint_wf i-member_wf real_wf rless_wf int-to-real_wf req_wf member_rccint_lemma rleq_weakening_equal rleq_weakening_rless rleq_wf derivative_wf continuous_wf rfun_wf rccint-icompact not-rless range-inf_wf rabs_wf small-reciprocal-real range-inf-property icompact_wf req_weakening rless_transitivity1 rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf all_wf rabs-nonzero-on-compact mul_nat_plus less_than_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma i-finite_wf simple-partition-exists rsum-telescopes subtract_wf sq_stable__less_than decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf int_seg_wf add-member-int_seg2 subtract-add-cancel add-subtract-cancel lelt_wf itermAdd_wf int_term_value_add_lemma rsum_wf rsub_wf false_wf req_functionality squash_wf true_wf equal_wf iff_weakening_equal real_term_polynomial req-iff-rsub-is-0 rsub_functionality rsum_linearity1 rmul_wf rsum_functionality radd_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma req_inversion req_transitivity rabs-rsum rsum_functionality_wrt_rleq int_seg_properties int_term_value_mul_lemma set_wf less_than'_wf nat_plus_wf radd-preserves-rleq sq_stable__and sq_stable__rleq rleq_functionality rabs-of-nonneg rleq_functionality_wrt_implies rsum_linearity2 rmul_functionality rmul_functionality_wrt_rleq2 radd-zero-both radd-rminus-both radd_functionality radd-ac radd_comm uiff_transitivity rminus_wf rleq-int-fractions2 sq_stable__i-member rmul_preserves_rleq2 or_wf rless-implies-rless radd-preserves-req itermMinus_wf real_term_value_minus_lemma radd_comm_eq uiff_transitivity2 rabs_functionality rabs-rminus rless-int-fractions rabs-bounds rleq-rmax rabs-as-rmax rmul_preserves_rless rinv_wf2 rless_functionality rinv-mul-as-rdiv rminus_functionality rless_irreflexivity rmul_reverses_rleq rleq-int radd_functionality_wrt_rleq rless_functionality_wrt_implies rleq_weakening rless_transitivity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality setEquality independent_functionElimination natural_numberEquality because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation productEquality productElimination dependent_pairFormation inrFormation unionElimination int_eqEquality intEquality computeAll functionEquality imageMemberEquality baseClosed addEquality imageElimination functionExtensionality addLevel hyp_replacement equalitySymmetry equalityTransitivity applyLambdaEquality levelHypothesis multiplyEquality minusEquality independent_pairEquality axiomEquality universeEquality inlFormation isect_memberFormation orFunctionality promote_hyp comment orLevelFunctionality

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
                (f'[x]  continuous  for  x  \mmember{}  [a,  b]
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  [a,  b]
                {}\mRightarrow{}  (f[a]  =  f[b])
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  \mwedge{}  (|f'[x]|  \mleq{}  e))))))))



Date html generated: 2017_10_03-PM-00_20_46
Last ObjectModification: 2017_07_28-AM-08_39_54

Theory : reals


Home Index