Nuprl Lemma : simple-partition-exists

a,b:ℝ.
  ((a ≤ b)
   (∀e:ℝ
        ((r0 < e)
         (∃M:ℕ+
             ∃g:ℕ1 ⟶ {x:ℝx ∈ [a, b]} 
              (((g 0) a ∈ ℝ) ∧ ((g M) b ∈ ℝ) ∧ (∀i:ℕM. (((g i) ≤ (g (i 1))) ∧ (((g (i 1)) i) ≤ e))))))))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] exists: x:A. B[x] full-partition: full-partition(I;p) top: Top nat_plus: + partition: partition(I) ge: i ≥  rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A prop: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k less_than': less_than'(a;b) subtype_rel: A ⊆B real: sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) subtract: m so_apply: x[s] l_all: (∀x∈L.P[x]) less_than: a < b guard: {T} cand: c∧ B select: L[n] cons: [a b] left-endpoint: left-endpoint(I) pi1: fst(t) endpoints: endpoints(I) rccint: [l, u] outl: outl(x) true: True rev_implies:  Q rbetween: x≤y≤z rsub: y
Lemmas referenced :  rccint-icompact partition-exists rccint_wf length_of_cons_lemma right_endpoint_rccint_lemma subtract_wf length_wf real_wf append_wf cons_wf nil_wf length-append length_of_nil_lemma non_neg_length nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermSubtract_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf less_than_wf exists_wf int_seg_wf i-member_wf equal_wf false_wf lelt_wf sq_stable__less_than int-to-real_wf decidable__le member_rccint_lemma all_wf rleq_wf add-member-int_seg2 add-subtract-cancel rsub_wf rless_wf full-partition-point-member full-partition_wf add-is-int-iff subtract-is-int-iff select_wf int_seg_properties left_endpoint_rccint_lemma squash_wf true_wf select_cons_tl le_wf length_append subtype_rel_list top_wf iff_weakening_equal length-singleton select_append_back select-cons-hd adjacent-full-partition-points radd-preserves-rleq radd_wf rminus_wf uiff_transitivity rleq_functionality radd_comm radd-ac req_weakening radd_functionality radd-rminus-both radd-zero-both rleq_transitivity partition-mesh_wf add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis isectElimination dependent_pairFormation sqequalRule isect_memberEquality voidElimination voidEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll functionEquality because_Cache setEquality productEquality applyEquality functionExtensionality imageMemberEquality baseClosed imageElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion universeEquality

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  \mleq{}  b)
    {}\mRightarrow{}  (\mforall{}e:\mBbbR{}
                ((r0  <  e)
                {}\mRightarrow{}  (\mexists{}M:\mBbbN{}\msupplus{}
                          \mexists{}g:\mBbbN{}M  +  1  {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\} 
                            (((g  0)  =  a)
                            \mwedge{}  ((g  M)  =  b)
                            \mwedge{}  (\mforall{}i:\mBbbN{}M.  (((g  i)  \mleq{}  (g  (i  +  1)))  \mwedge{}  (((g  (i  +  1))  -  g  i)  \mleq{}  e))))))))



Date html generated: 2017_10_03-AM-09_44_40
Last ObjectModification: 2017_07_28-AM-07_58_31

Theory : reals


Home Index