Nuprl Lemma : simple-partition-exists
∀a,b:ℝ.
  ((a ≤ b)
  
⇒ (∀e:ℝ
        ((r0 < e)
        
⇒ (∃M:ℕ+
             ∃g:ℕM + 1 ⟶ {x:ℝ| x ∈ [a, b]} 
              (((g 0) = a ∈ ℝ) ∧ ((g M) = b ∈ ℝ) ∧ (∀i:ℕM. (((g i) ≤ (g (i + 1))) ∧ (((g (i + 1)) - g i) ≤ e))))))))
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rless: x < y
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
full-partition: full-partition(I;p)
, 
top: Top
, 
nat_plus: ℕ+
, 
partition: partition(I)
, 
ge: i ≥ j 
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
so_apply: x[s]
, 
l_all: (∀x∈L.P[x])
, 
less_than: a < b
, 
guard: {T}
, 
cand: A c∧ B
, 
select: L[n]
, 
cons: [a / b]
, 
left-endpoint: left-endpoint(I)
, 
pi1: fst(t)
, 
endpoints: endpoints(I)
, 
rccint: [l, u]
, 
outl: outl(x)
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
rbetween: x≤y≤z
, 
rsub: x - y
Lemmas referenced : 
rccint-icompact, 
partition-exists, 
rccint_wf, 
length_of_cons_lemma, 
right_endpoint_rccint_lemma, 
subtract_wf, 
length_wf, 
real_wf, 
append_wf, 
cons_wf, 
nil_wf, 
length-append, 
length_of_nil_lemma, 
non_neg_length, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
less_than_wf, 
exists_wf, 
int_seg_wf, 
i-member_wf, 
equal_wf, 
false_wf, 
lelt_wf, 
sq_stable__less_than, 
int-to-real_wf, 
decidable__le, 
member_rccint_lemma, 
all_wf, 
rleq_wf, 
add-member-int_seg2, 
add-subtract-cancel, 
rsub_wf, 
rless_wf, 
full-partition-point-member, 
full-partition_wf, 
add-is-int-iff, 
subtract-is-int-iff, 
select_wf, 
int_seg_properties, 
left_endpoint_rccint_lemma, 
squash_wf, 
true_wf, 
select_cons_tl, 
le_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
length-singleton, 
select_append_back, 
select-cons-hd, 
adjacent-full-partition-points, 
radd-preserves-rleq, 
radd_wf, 
rminus_wf, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd-ac, 
req_weakening, 
radd_functionality, 
radd-rminus-both, 
radd-zero-both, 
rleq_transitivity, 
partition-mesh_wf, 
add_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
dependent_pairFormation, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
because_Cache, 
setEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
universeEquality
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  \mleq{}  b)
    {}\mRightarrow{}  (\mforall{}e:\mBbbR{}
                ((r0  <  e)
                {}\mRightarrow{}  (\mexists{}M:\mBbbN{}\msupplus{}
                          \mexists{}g:\mBbbN{}M  +  1  {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\} 
                            (((g  0)  =  a)
                            \mwedge{}  ((g  M)  =  b)
                            \mwedge{}  (\mforall{}i:\mBbbN{}M.  (((g  i)  \mleq{}  (g  (i  +  1)))  \mwedge{}  (((g  (i  +  1))  -  g  i)  \mleq{}  e))))))))
Date html generated:
2017_10_03-AM-09_44_40
Last ObjectModification:
2017_07_28-AM-07_58_31
Theory : reals
Home
Index