Nuprl Lemma : partition-exists

I:Interval. (icompact(I)  (∀e:ℝ((r0 < e)  (∃p:partition(I). (partition-mesh(I;p) ≤ e)))))


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) partition: partition(I) icompact: icompact(I) interval: Interval rleq: x ≤ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: rneq: x ≠ y guard: {T} or: P ∨ Q icompact: icompact(I) and: P ∧ Q exists: x:A. B[x] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B
Lemmas referenced :  rmul_comm uiff_transitivity rmul_preserves_rleq rmul-rdiv-cancel2 nat_plus_wf rmul_wf rsub_wf less_than'_wf rleq_weakening_rless rmul_preserves_rleq2 req_weakening mesh-uniform-partition rleq_functionality int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int partition-mesh_wf uniform-partition_wf rabs_wf rleq_transitivity rabs-bounds rleq_wf i-length_wf rdiv_wf integer-bound interval_wf icompact_wf real_wf int-to-real_wf rless_wf icompact-length-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis natural_numberEquality dependent_functionElimination sqequalRule inrFormation productElimination dependent_pairFormation setElimination rename because_Cache independent_functionElimination unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll isect_memberFormation introduction independent_pairEquality applyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}p:partition(I).  (partition-mesh(I;p)  \mleq{}  e)))))



Date html generated: 2016_05_18-AM-09_02_28
Last ObjectModification: 2016_01_17-AM-02_32_35

Theory : reals


Home Index