Nuprl Lemma : adjacent-full-partition-points

[I:Interval]
  ∀[p:partition(I)]
    ∀i:ℕ||full-partition(I;p)|| 1. r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p) 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) interval: Interval rbetween: x≤y≤z rsub: y int-to-real: r(n) select: L[n] length: ||as|| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] rbetween: x≤y≤z and: P ∧ Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T uiff: uiff(P;Q) sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B partition: partition(I) full-partition: full-partition(I;p) sq_type: SQType(T) select: L[n] cons: [a b] subtract: m less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q icompact: icompact(I) nat: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b last: last(L) append: as bs list_ind: list_ind nil: [] right-endpoint: right-endpoint(I) pi2: snd(t) endpoints: endpoints(I) left-endpoint: left-endpoint(I) pi1: fst(t) ge: i ≥ 
Lemmas referenced :  adjacent-partition-points sq_stable__and rleq_wf int-to-real_wf rsub_wf select_wf real_wf full-partition_wf int_seg_properties subtract_wf length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf partition-mesh_wf sq_stable__rleq less_than'_wf nat_plus_wf squash_wf length_of_cons_lemma length-append length_of_nil_lemma add-subtract-cancel int_seg_wf partition_wf icompact_wf interval_wf decidable__equal_int subtype_base_sq int_subtype_base cons_wf right-endpoint_wf nil_wf lelt_wf left-endpoint_wf rbetween_wf true_wf select_append_front iff_weakening_equal append_wf le_wf length_append subtype_rel_list top_wf length-singleton intformeq_wf int_formula_prop_eq_lemma select_cons_tl general_arith_equation1 select-append lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf add-is-int-iff list-cases product_subtype_list non_neg_length
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation productElimination natural_numberEquality independent_isectElimination addEquality setElimination rename because_Cache dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed independent_functionElimination independent_pairEquality applyEquality minusEquality axiomEquality imageMemberEquality instantiate cumulativity dependent_set_memberEquality universeEquality equalityElimination hypothesis_subsumption

Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)]
        \mforall{}i:\mBbbN{}||full-partition(I;p)||  -  1
            r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p) 
    supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_41_17
Last ObjectModification: 2017_07_28-AM-07_56_28

Theory : reals


Home Index