Nuprl Lemma : rbetween_wf

[x,y,z:ℝ].  (x≤y≤z ∈ ℙ)


Proof




Definitions occuring in Statement :  rbetween: x≤y≤z real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  rbetween: x≤y≤z uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  and_wf rleq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y,z:\mBbbR{}].    (x\mleq{}y\mleq{}z  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_06_22
Last ObjectModification: 2015_12_28-AM-00_37_09

Theory : reals


Home Index