Nuprl Lemma : rabs-nonzero-on-compact
∀a,b:ℝ.
  ((a ≤ b)
  
⇒ (∀f:[a, b] ⟶ℝ. ∀k:ℕ+.
        (f[x] continuous for x ∈ [a, b]
        
⇒ (∀x:ℝ. ((x ∈ [a, b]) 
⇒ ((r1/r(k)) ≤ |f[x]|)))
        
⇒ ((∀x:ℝ. ((x ∈ [a, b]) 
⇒ ((r1/r(k)) ≤ f[x]))) ∨ (∀x:ℝ. ((x ∈ [a, b]) 
⇒ (f[x] ≤ (r(-1)/r(k)))))))))
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
r-ap: f(x)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
subtype_rel: A ⊆r B
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
Lemmas referenced : 
r-ap_wf, 
rless_irreflexivity, 
rabs_functionality, 
sq_stable__i-member, 
rmin_ub, 
rmax_lb, 
rleq_transitivity, 
rmin_wf, 
rmax_wf, 
mul_nat_plus, 
less_than_wf, 
rmul_preserves_rless, 
rless-int-fractions, 
intermediate-value-theorem, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_transitivity1, 
rless_functionality, 
req_transitivity, 
rmul-rinv, 
rmul_reverses_rleq, 
rminus_wf, 
rleq-int, 
false_wf, 
less_than'_wf, 
rsub_wf, 
rmul_wf, 
rinv_wf2, 
uiff_transitivity, 
rleq_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
req_weakening, 
rminus_functionality, 
rinv-as-rdiv, 
rleq_weakening_equal, 
rabs-ub, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rless-int-fractions2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
member_rccint_lemma, 
rleq_wf, 
i-member_wf, 
rccint_wf, 
all_wf, 
real_wf, 
rabs_wf, 
continuous_wf, 
nat_plus_wf, 
rfun_wf, 
rminus-rdiv, 
rmul-one-both, 
rmul_over_rminus, 
rmul-minus, 
rmul_reverses_rleq_iff, 
squash_wf, 
true_wf, 
rneq_wf, 
rminus-int, 
iff_weakening_equal
Rules used in proof : 
universeEquality, 
lemma_by_obid, 
promote_hyp, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
addLevel, 
isect_memberFormation, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
inrFormation, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
multiplyEquality, 
applyEquality, 
dependent_set_memberEquality, 
productEquality, 
inlFormation, 
functionEquality, 
minusEquality, 
setEquality
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  \mleq{}  b)
    {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}k:\mBbbN{}\msupplus{}.
                (f[x]  continuous  for  x  \mmember{}  [a,  b]
                {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  ((r1/r(k))  \mleq{}  |f[x]|)))
                {}\mRightarrow{}  ((\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  ((r1/r(k))  \mleq{}  f[x])))
                      \mvee{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (f[x]  \mleq{}  (r(-1)/r(k)))))))))
Date html generated:
2018_05_22-PM-02_46_47
Last ObjectModification:
2018_05_20-PM-02_47_16
Theory : reals
Home
Index