Nuprl Lemma : rabs-nonzero-on-compact

a,b:ℝ.
  ((a ≤ b)
   (∀f:[a, b] ⟶ℝ. ∀k:ℕ+.
        (f[x] continuous for x ∈ [a, b]
         (∀x:ℝ((x ∈ [a, b])  ((r1/r(k)) ≤ |f[x]|)))
         ((∀x:ℝ((x ∈ [a, b])  ((r1/r(k)) ≤ f[x]))) ∨ (∀x:ℝ((x ∈ [a, b])  (f[x] ≤ (r(-1)/r(k)))))))))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rabs: |x| int-to-real: r(n) real: nat_plus: + so_apply: x[s] all: x:A. B[x] implies:  Q or: P ∨ Q minus: -n natural_number: $n
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) rless: x < y sq_exists: x:A [B[x]] r-ap: f(x) less_than: a < b squash: T true: True le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) subtype_rel: A ⊆B rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 all: x:A. B[x] implies:  Q member: t ∈ T i-member: r ∈ I rccint: [l, u] and: P ∧ Q uall: [x:A]. B[x] uimplies: supposing a nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: so_apply: x[s] rfun: I ⟶ℝ cand: c∧ B so_lambda: λ2x.t[x] label: ...$L... t
Lemmas referenced :  r-ap_wf rless_irreflexivity rabs_functionality sq_stable__i-member rmin_ub rmax_lb rleq_transitivity rmin_wf rmax_wf mul_nat_plus less_than_wf rmul_preserves_rless rless-int-fractions intermediate-value-theorem rless_transitivity2 rleq_weakening_rless rless_transitivity1 rless_functionality req_transitivity rmul-rinv rmul_reverses_rleq rminus_wf rleq-int false_wf less_than'_wf rsub_wf rmul_wf rinv_wf2 uiff_transitivity rleq_functionality real_term_polynomial itermSubtract_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_weakening rminus_functionality rinv-as-rdiv rleq_weakening_equal rabs-ub rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rless-int-fractions2 itermMultiply_wf int_term_value_mul_lemma member_rccint_lemma rleq_wf i-member_wf rccint_wf all_wf real_wf rabs_wf continuous_wf nat_plus_wf rfun_wf rminus-rdiv rmul-one-both rmul_over_rminus rmul-minus rmul_reverses_rleq_iff squash_wf true_wf rneq_wf rminus-int iff_weakening_equal
Rules used in proof :  universeEquality lemma_by_obid promote_hyp imageElimination imageMemberEquality baseClosed addLevel isect_memberFormation independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination sqequalRule independent_pairFormation introduction extract_by_obid isectElimination because_Cache independent_isectElimination natural_numberEquality setElimination rename inrFormation productElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll multiplyEquality applyEquality dependent_set_memberEquality productEquality inlFormation functionEquality minusEquality setEquality

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  \mleq{}  b)
    {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}k:\mBbbN{}\msupplus{}.
                (f[x]  continuous  for  x  \mmember{}  [a,  b]
                {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  ((r1/r(k))  \mleq{}  |f[x]|)))
                {}\mRightarrow{}  ((\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  ((r1/r(k))  \mleq{}  f[x])))
                      \mvee{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (f[x]  \mleq{}  (r(-1)/r(k)))))))))



Date html generated: 2018_05_22-PM-02_46_47
Last ObjectModification: 2018_05_20-PM-02_47_16

Theory : reals


Home Index