Nuprl Lemma : rless-int-fractions
∀a,b:ℤ. ∀c,d:ℕ+.  ((r(a)/r(c)) < (r(b)/r(d)) 
⇐⇒ a * d < b * c)
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rless: x < y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul-rdiv-cancel, 
rmul-ac, 
rmul_functionality, 
rmul-assoc, 
req_inversion, 
req_functionality, 
uiff_transitivity, 
rmul-int, 
rmul_comm, 
rmul-rdiv-cancel2, 
rless_functionality, 
req_weakening, 
req_wf, 
rmul_wf, 
rmul_preserves_rless, 
nat_plus_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
multiplyEquality, 
promote_hyp, 
addLevel
Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}c,d:\mBbbN{}\msupplus{}.    ((r(a)/r(c))  <  (r(b)/r(d))  \mLeftarrow{}{}\mRightarrow{}  a  *  d  <  b  *  c)
Date html generated:
2016_05_18-AM-07_27_34
Last ObjectModification:
2016_01_17-AM-02_00_26
Theory : reals
Home
Index