Nuprl Lemma : range-inf_wf
∀[I:{I:Interval| icompact(I)} ]. ∀[f:I ⟶ℝ]. ∀[mc:f[x] continuous for x ∈ I]. (inf{f[x]|x ∈ I} ∈ ℝ)
Proof
Definitions occuring in Statement :
range-inf: inf{f[x]|x ∈ I}
,
continuous: f[x] continuous for x ∈ I
,
icompact: icompact(I)
,
rfun: I ⟶ℝ
,
interval: Interval
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
set: {x:A| B[x]}
Definitions unfolded in proof :
r-ap: f(x)
,
squash: ↓T
,
implies: P
⇒ Q
,
sq_stable: SqStable(P)
,
uimplies: b supposing a
,
guard: {T}
,
prop: ℙ
,
all: ∀x:A. B[x]
,
rfun: I ⟶ℝ
,
label: ...$L... t
,
so_lambda: λ2x.t[x]
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
range-inf: inf{f[x]|x ∈ I}
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
Lemmas referenced :
equal_wf,
all_wf,
inf-range,
icompact_wf,
interval_wf,
set_wf,
rfun_wf,
subtype_rel_self,
continuous_wf,
sq_stable__i-member,
i-member_wf,
r-ap_wf,
rrange_wf,
inf_wf,
exists_wf,
real_wf,
pi1_wf_top
Rules used in proof :
functionExtensionality,
functionEquality,
instantiate,
isect_memberEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
imageElimination,
baseClosed,
imageMemberEquality,
independent_functionElimination,
independent_isectElimination,
setEquality,
dependent_functionElimination,
dependent_set_memberEquality,
hypothesisEquality,
lambdaFormation,
lambdaEquality,
because_Cache,
applyEquality,
hypothesis,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
rename,
thin,
setElimination,
cut,
introduction,
isect_memberFormation,
computationStep,
sqequalTransitivity,
sqequalReflexivity,
sqequalRule,
sqequalSubstitution
Latex:
\mforall{}[I:\{I:Interval| icompact(I)\} ]. \mforall{}[f:I {}\mrightarrow{}\mBbbR{}]. \mforall{}[mc:f[x] continuous for x \mmember{} I]. (inf\{f[x]|x \mmember{} I\} \mmember{} \mBbbR{})
Date html generated:
2018_05_22-PM-02_18_29
Last ObjectModification:
2018_05_21-AM-00_34_58
Theory : reals
Home
Index