Nuprl Lemma : inf-range

I:{I:Interval| icompact(I)} . ∀f:I ⟶ℝ.  (f[x] continuous for x ∈  (∃y:ℝinf(f(x)(x∈I)) y))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rrange: f[x](x∈I) icompact: icompact(I) r-ap: f(x) rfun: I ⟶ℝ interval: Interval inf: inf(A) b real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T so_apply: x[s] r-ap: f(x) rfun: I ⟶ℝ uall: [x:A]. B[x] uimplies: supposing a prop: so_lambda: λ2x.t[x] label: ...$L... t
Lemmas referenced :  rrange_wf totally-bounded-inf icompact_wf interval_wf rfun_wf continuous_wf i-member_wf real_wf sq_stable__i-member r-ap_wf sq_stable__icompact continuous-compact-range-totally-bounded
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination because_Cache lambdaEquality isectElimination independent_isectElimination setEquality applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  inf(f(x)(x\mmember{}I))  =  y))



Date html generated: 2016_05_18-AM-09_15_40
Last ObjectModification: 2016_01_17-AM-02_38_47

Theory : reals


Home Index