Nuprl Lemma : totally-bounded-inf

[A:Set(ℝ)]. (totally-bounded(A)  (∃b:ℝinf(A) b))


Proof




Definitions occuring in Statement :  totally-bounded: totally-bounded(A) inf: inf(A) b rset: Set(ℝ) real: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T rev_implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q prop: squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T}
Lemmas referenced :  inf-as-sup inf_wf totally-bounded_wf rset_wf totally-bounded-sup rset-neg_wf totally-bounded-neg rminus_wf sup_wf squash_wf true_wf real_wf rminus-rminus-eq subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut sqequalHypSubstitution productElimination thin dependent_pairFormation_alt hypothesisEquality introduction extract_by_obid isectElimination dependent_functionElimination hypothesis independent_functionElimination universeIsType applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination

Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  inf(A)  =  b))



Date html generated: 2019_10_29-AM-10_45_02
Last ObjectModification: 2019_04_19-PM-06_33_53

Theory : reals


Home Index