Nuprl Lemma : totally-bounded-inf
∀[A:Set(ℝ)]. (totally-bounded(A) 
⇒ (∃b:ℝ. inf(A) = b))
Proof
Definitions occuring in Statement : 
totally-bounded: totally-bounded(A)
, 
inf: inf(A) = b
, 
rset: Set(ℝ)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
inf-as-sup, 
inf_wf, 
totally-bounded_wf, 
rset_wf, 
totally-bounded-sup, 
rset-neg_wf, 
totally-bounded-neg, 
rminus_wf, 
sup_wf, 
squash_wf, 
true_wf, 
real_wf, 
rminus-rminus-eq, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
hypothesis, 
independent_functionElimination, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  inf(A)  =  b))
Date html generated:
2019_10_29-AM-10_45_02
Last ObjectModification:
2019_04_19-PM-06_33_53
Theory : reals
Home
Index