Nuprl Lemma : rminus-rminus-eq

[x:ℝ]. (-(-(x)) x ∈ ℝ)


Proof




Definitions occuring in Statement :  rminus: -(x) real: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] real: rminus: -(x) member: t ∈ T nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  real_wf regular-int-seq_wf nat_plus_wf int_formula_prop_wf int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermMinus_wf itermVar_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality functionExtensionality sqequalRule lemma_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination because_Cache unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[x:\mBbbR{}].  (-(-(x))  =  x)



Date html generated: 2016_05_18-AM-06_51_12
Last ObjectModification: 2016_01_17-AM-01_46_04

Theory : reals


Home Index