Nuprl Lemma : inf-as-sup

[A:Set(ℝ)]. ∀b:ℝ(inf(A) ⇐⇒ sup(-(A)) -(b))


Proof




Definitions occuring in Statement :  rset-neg: -(A) inf: inf(A) b sup: sup(A) b rset: Set(ℝ) rminus: -(x) real: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  sup: sup(A) b inf: inf(A) b all: x:A. B[x] member: t ∈ T top: Top upper-bound: A ≤ b lower-bound: lower-bound(A;b) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uimplies: supposing a rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B prop: exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} rsub: y req_int_terms: t1 ≡ t2 false: False not: ¬A
Lemmas referenced :  member_rset_neg_lemma istype-void rmul_reverses_rleq_iff int-to-real_wf rminus_wf rless-int le_witness_for_triv rset-member_wf squash_wf true_wf rminus-rminus-eq subtype_rel_self iff_weakening_equal rmul_reverses_rless_iff rsub_wf rless_wf rleq_wf radd_wf real_wf rset_wf rmul_wf itermSubtract_wf itermMultiply_wf itermMinus_wf itermVar_wf itermConstant_wf itermAdd_wf rleq_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma rless_functionality real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isect_memberFormation_alt lambdaFormation_alt independent_pairFormation productElimination isectElimination hypothesisEquality minusEquality natural_numberEquality independent_isectElimination independent_functionElimination imageMemberEquality baseClosed lambdaEquality_alt equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType universeIsType dependent_pairFormation_alt promote_hyp applyEquality imageElimination because_Cache instantiate universeEquality productIsType functionIsType approximateComputation int_eqEquality

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}b:\mBbbR{}.  (inf(A)  =  b  \mLeftarrow{}{}\mRightarrow{}  sup(-(A))  =  -(b))



Date html generated: 2019_10_29-AM-10_44_27
Last ObjectModification: 2019_04_19-PM-06_09_11

Theory : reals


Home Index