Step
*
of Lemma
Rolles-theorem
∀a,b:ℝ.
((a < b)
⇒ (∀f,f':[a, b] ⟶ℝ.
(f'[x] continuous for x ∈ [a, b]
⇒ d(f[x])/dx = λx.f'[x] on [a, b]
⇒ (f[a] = f[b])
⇒ (∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ [a, b]) ∧ (|f'[x]| ≤ e))))))))
BY
{ (Auto THEN (Assert |f'[x]| continuous for x ∈ [a, b] BY (ProveRealContinuous THEN Auto))) }
1
1. a : ℝ
2. b : ℝ
3. a < b
4. f : [a, b] ⟶ℝ
5. f' : [a, b] ⟶ℝ
6. f'[x] continuous for x ∈ [a, b]
7. d(f[x])/dx = λx.f'[x] on [a, b]
8. f[a] = f[b]
9. e : ℝ
10. r0 < e
11. |f'[x]| continuous for x ∈ [a, b]
⊢ ∃x:ℝ. ((x ∈ [a, b]) ∧ (|f'[x]| ≤ e))
Latex:
Latex:
\mforall{}a,b:\mBbbR{}.
((a < b)
{}\mRightarrow{} (\mforall{}f,f':[a, b] {}\mrightarrow{}\mBbbR{}.
(f'[x] continuous for x \mmember{} [a, b]
{}\mRightarrow{} d(f[x])/dx = \mlambda{}x.f'[x] on [a, b]
{}\mRightarrow{} (f[a] = f[b])
{}\mRightarrow{} (\mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:\mBbbR{}. ((x \mmember{} [a, b]) \mwedge{} (|f'[x]| \mleq{} e))))))))
By
Latex:
(Auto THEN (Assert |f'[x]| continuous for x \mmember{} [a, b] BY (ProveRealContinuous THEN Auto)))
Home
Index