Nuprl Lemma : Taylor-approx_functionality
∀[I:Interval]. ∀[n:ℕ]. ∀[F:ℕn + 1 ⟶ I ⟶ℝ].
  ∀[a1,b1,a2,b2:{a:ℝ| a ∈ I} ].
    (Taylor-approx(n;a1;b1;i,x.F[i;x]) = Taylor-approx(n;a2;b2;i,x.F[i;x])) supposing ((a1 = a2) and (b1 = b2)) 
  supposing ∀k:ℕn + 1. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (F[k;x] = F[k;y]))
Proof
Definitions occuring in Statement : 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
Lemmas referenced : 
rsum_functionality, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
fact_wf, 
int_seg_subtype_nat, 
false_wf, 
rless-int, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
le_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
rless_wf, 
rnexp_wf, 
rsub_wf, 
rmul_functionality, 
itermAdd_wf, 
intformle_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
lelt_wf, 
i-member_wf, 
rnexp_functionality, 
rsub_functionality, 
req_witness, 
Taylor-approx_wf, 
int_seg_wf, 
rfun_wf, 
real_wf, 
req_wf, 
set_wf, 
all_wf, 
nat_wf, 
interval_wf, 
req_weakening, 
rdiv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
addEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :applyLambdaEquality, 
voidElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
setEquality, 
functionEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  +  1  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].
    \mforall{}[a1,b1,a2,b2:\{a:\mBbbR{}|  a  \mmember{}  I\}  ].
        (Taylor-approx(n;a1;b1;i,x.F[i;x])  =  Taylor-approx(n;a2;b2;i,x.F[i;x]))  supposing 
              ((a1  =  a2)  and 
              (b1  =  b2)) 
    supposing  \mforall{}k:\mBbbN{}n  +  1.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y]))
Date html generated:
2016_10_26-AM-11_44_27
Last ObjectModification:
2016_08_28-PM-10_37_45
Theory : reals
Home
Index