Nuprl Lemma : trivial-Taylor-approx

[I:Interval]. ∀[n:ℕ]. ∀[F:ℕ1 ⟶ I ⟶ℝ]. ∀[a,b:{x:ℝx ∈ I} ].
  ((a b)  (Taylor-approx(n;a;b;i,x.F[i;x]) F[0;a]))


Proof




Definitions occuring in Statement :  Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval req: y real: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) prop: so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] nat: subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + less_than: a < b squash: T fact: (n)! primrec: primrec(n;b;c) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) pointwise-req: x[k] y[k] for k ∈ [n,m] subtract: m rsub: y
Lemmas referenced :  req_wf req_witness Taylor-approx_wf int_seg_wf rfun_wf i-member_wf real_wf false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf set_wf nat_wf interval_wf rsum_wf rmul_wf rdiv_wf int-to-real_wf fact_wf int_seg_subtype_nat rless-int int_seg_properties le_wf nat_plus_properties rless_wf rnexp_wf rsub_wf radd_wf nat_plus_wf decidable__le rneq-int fact-non-zero fact0_redex_lemma rnexp_zero_lemma req_weakening req_functionality rsum-split-first radd_functionality req_transitivity rsum-zero uiff_transitivity rmul-rdiv-cancel2 radd_comm radd-zero-both rsum_functionality equal_wf rmul_functionality rnexp_functionality rsub_functionality rminus_wf exp_wf2 not-lt-2 condition-implies-le add-commutes minus-add minus-zero zero-add add_functionality_wrt_le le-add-cancel less_than_wf rmul-zero-both rmul_comm radd-rminus-both rnexp-int squash_wf true_wf exp-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination applyEquality functionExtensionality natural_numberEquality addEquality because_Cache dependent_set_memberEquality setEquality independent_pairFormation unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality inrFormation productElimination equalityTransitivity equalitySymmetry applyLambdaEquality imageMemberEquality baseClosed minusEquality imageElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  +  1  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  ].
    ((a  =  b)  {}\mRightarrow{}  (Taylor-approx(n;a;b;i,x.F[i;x])  =  F[0;a]))



Date html generated: 2017_10_03-PM-00_38_09
Last ObjectModification: 2017_07_28-AM-08_45_03

Theory : reals


Home Index