Step
*
of Lemma
Taylor-theorem
∀I:Interval
(iproper(I)
⇒ (∀n:ℕ+. ∀F:ℕn + 2 ⟶ I ⟶ℝ. ∀a,b:{a:ℝ| a ∈ I} .
((∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ (F[k;x] = F[k;y])))
⇒ finite-deriv-seq(I;n + 1;i,x.F[i;x])
⇒ (∀e:ℝ
((r0 < e)
⇒ (∃c:ℝ
((rmin(a;b) ≤ c)
∧ (c ≤ rmax(a;b))
∧ (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) - (b - c^n * (F[n + 1;c]/r((n)!))) * (b - a)| ≤ e))))))))
BY
{ (InstLemma `Taylor-theorem-case2` [] THEN RepeatFor 10 ((ParallelLast' THENA Auto)) THEN ExRepD) }
1
1. I : Interval
2. iproper(I)
3. n : ℕ+
4. F : ℕn + 2 ⟶ I ⟶ℝ
5. a : {a:ℝ| a ∈ I}
6. b : {a:ℝ| a ∈ I}
7. ∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : ℝ
10. r0 < e
11. d : ℝ
12. r0 < d
13. (|a - b| < d)
⇒ (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| ≤ e)
⊢ ∃c:ℝ
((rmin(a;b) ≤ c)
∧ (c ≤ rmax(a;b))
∧ (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) - (b - c^n * (F[n + 1;c]/r((n)!))) * (b - a)| ≤ e))
Latex:
Latex:
\mforall{}I:Interval
(iproper(I)
{}\mRightarrow{} (\mforall{}n:\mBbbN{}\msupplus{}. \mforall{}F:\mBbbN{}n + 2 {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}. \mforall{}a,b:\{a:\mBbbR{}| a \mmember{} I\} .
((\mforall{}k:\mBbbN{}n + 2. \mforall{}x,y:\{a:\mBbbR{}| a \mmember{} I\} . ((x = y) {}\mRightarrow{} (F[k;x] = F[k;y])))
{}\mRightarrow{} finite-deriv-seq(I;n + 1;i,x.F[i;x])
{}\mRightarrow{} (\mforall{}e:\mBbbR{}
((r0 < e)
{}\mRightarrow{} (\mexists{}c:\mBbbR{}
((rmin(a;b) \mleq{} c)
\mwedge{} (c \mleq{} rmax(a;b))
\mwedge{} (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) - (b - c\^{}n * (F[n + 1;c]/r((n)!)))
* (b - a)| \mleq{} e))))))))
By
Latex:
(InstLemma `Taylor-theorem-case2` [] THEN RepeatFor 10 ((ParallelLast' THENA Auto)) THEN ExRepD)
Home
Index