Step
*
of Lemma
Taylor-theorem
∀I:Interval
  (iproper(I)
  
⇒ (∀n:ℕ+. ∀F:ℕn + 2 ⟶ I ⟶ℝ. ∀a,b:{a:ℝ| a ∈ I} .
        ((∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (F[k;x] = F[k;y])))
        
⇒ finite-deriv-seq(I;n + 1;i,x.F[i;x])
        
⇒ (∀e:ℝ
              ((r0 < e)
              
⇒ (∃c:ℝ
                   ((rmin(a;b) ≤ c)
                   ∧ (c ≤ rmax(a;b))
                   ∧ (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) - (b - c^n * (F[n + 1;c]/r((n)!))) * (b - a)| ≤ e))))))))
BY
{ (InstLemma `Taylor-theorem-case2` [] THEN RepeatFor 10 ((ParallelLast' THENA Auto)) THEN ExRepD) }
1
1. I : Interval
2. iproper(I)
3. n : ℕ+
4. F : ℕn + 2 ⟶ I ⟶ℝ
5. a : {a:ℝ| a ∈ I} 
6. b : {a:ℝ| a ∈ I} 
7. ∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : ℝ
10. r0 < e
11. d : ℝ
12. r0 < d
13. (|a - b| < d) 
⇒ (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| ≤ e)
⊢ ∃c:ℝ
   ((rmin(a;b) ≤ c)
   ∧ (c ≤ rmax(a;b))
   ∧ (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) - (b - c^n * (F[n + 1;c]/r((n)!))) * (b - a)| ≤ e))
Latex:
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}
                            ((r0  <  e)
                            {}\mRightarrow{}  (\mexists{}c:\mBbbR{}
                                      ((rmin(a;b)  \mleq{}  c)
                                      \mwedge{}  (c  \mleq{}  rmax(a;b))
                                      \mwedge{}  (|Taylor-remainder(I;n;b;a;k,x.F[k;x])  -  (b  -  c\^{}n  *  (F[n  +  1;c]/r((n)!)))
                                          *  (b  -  a)|  \mleq{}  e))))))))
By
Latex:
(InstLemma  `Taylor-theorem-case2`  []  THEN  RepeatFor  10  ((ParallelLast'  THENA  Auto))  THEN  ExRepD)
Home
Index