Nuprl Lemma : rnexp0
∀[k:ℕ+]. (r0^k = r0)
Proof
Definitions occuring in Statement : 
rnexp: x^k1, 
req: x = y, 
int-to-real: r(n), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rnexp_wf, 
nat_plus_subtype_nat, 
int-to-real_wf, 
nat_plus_wf, 
exp_wf2, 
req-int, 
equal_wf, 
squash_wf, 
true_wf, 
exp-zero, 
iff_weakening_equal, 
req_functionality, 
rnexp-int, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
natural_numberEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  (r0\^{}k  =  r0)
Date html generated:
2017_10_03-AM-08_22_00
Last ObjectModification:
2017_07_28-AM-07_22_05
Theory : reals
Home
Index