Nuprl Lemma : rnexp0

[k:ℕ+]. (r0^k r0)


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rnexp_wf nat_plus_subtype_nat int-to-real_wf nat_plus_wf exp_wf2 req-int equal_wf squash_wf true_wf exp-zero iff_weakening_equal req_functionality rnexp-int req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule natural_numberEquality independent_functionElimination because_Cache productElimination independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality imageMemberEquality baseClosed

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  (r0\^{}k  =  r0)



Date html generated: 2017_10_03-AM-08_22_00
Last ObjectModification: 2017_07_28-AM-07_22_05

Theory : reals


Home Index