Nuprl Lemma : rnexp0
∀[k:ℕ+]. (r0^k = r0)
Proof
Definitions occuring in Statement : 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rnexp_wf, 
nat_plus_subtype_nat, 
int-to-real_wf, 
nat_plus_wf, 
exp_wf2, 
req-int, 
equal_wf, 
squash_wf, 
true_wf, 
exp-zero, 
iff_weakening_equal, 
req_functionality, 
rnexp-int, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
natural_numberEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  (r0\^{}k  =  r0)
Date html generated:
2017_10_03-AM-08_22_00
Last ObjectModification:
2017_07_28-AM-07_22_05
Theory : reals
Home
Index