Nuprl Lemma : Taylor-theorem-case2
∀I:Interval
  (iproper(I)
  
⇒ (∀n:ℕ+. ∀F:ℕn + 2 ⟶ I ⟶ℝ. ∀a,b:{a:ℝ| a ∈ I} .
        ((∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (F[k;x] = F[k;y])))
        
⇒ finite-deriv-seq(I;n + 1;i,x.F[i;x])
        
⇒ (∀e:ℝ. ((r0 < e) 
⇒ (∃d:ℝ. ((r0 < d) ∧ ((|a - b| < d) 
⇒ (|Taylor-remainder(I;n;b;a;k,x.F[k;x])| ≤ e)))))))))
Proof
Definitions occuring in Statement : 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
ge: i ≥ j 
, 
subtract: n - m
, 
int_upper: {i...}
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
primrec: primrec(n;b;c)
, 
fact: (n)!
, 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
, 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
subinterval: I ⊆ J 
, 
i-member: r ∈ I
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
rneq: x ≠ y
, 
true: True
, 
less_than: a < b
, 
rccint: [l, u]
, 
i-approx: i-approx(I;n)
, 
continuous: f[x] continuous for x ∈ I
, 
cand: A c∧ B
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_apply: x[s1;s2]
, 
rfun: I ⟶ℝ
, 
label: ...$L... t
, 
so_lambda: λ2x y.t[x; y]
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rinv-as-rdiv, 
rmul-rinv3, 
rmul-rinv, 
rinv-of-rmul, 
rinv_functionality2, 
rmul-int, 
rneq_functionality, 
subtract-add-cancel, 
rsum-one, 
bfalse_wf, 
ifthenelse_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
rsum-constant, 
mul_preserves_le, 
nat_properties, 
upper_subtype_nat, 
exp_preserves_le, 
nat_wf, 
int_term_value_subtract_lemma, 
subtract_wf, 
exp_step, 
exp-one, 
rleq-int-fractions, 
rdiv_functionality, 
rnexp-rdiv, 
req_inversion, 
rnexp-int, 
exp_wf3, 
int_nzero-rational, 
equal_functionality_wrt_subtype_rel2, 
int-subtype-rationals, 
exp_wf_nat_plus, 
rationals_wf, 
not_functionality_wrt_implies, 
exp-positive, 
exp_wf2, 
rless_transitivity1, 
le-add-cancel, 
add_functionality_wrt_le, 
zero-add, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
not-lt-2, 
zero-rleq-rabs, 
rnexp-rless, 
rabs-rnexp, 
rless_functionality, 
int_upper_properties, 
int_upper_wf, 
rleq_weakening, 
rabs-rmul-rleq, 
rsum_functionality_wrt_rleq, 
rabs-difference-symmetry, 
rleq_weakening_rless, 
rleq-rmax, 
rmin-rleq, 
rabs-rsum, 
radd_functionality_wrt_rleq, 
real_term_value_minus_lemma, 
real_term_value_add_lemma, 
r-triangle-inequality, 
rleq_functionality_wrt_implies, 
iff_weakening_equal, 
rabs-rminus, 
rleq_weakening_equal, 
itermMinus_wf, 
rminus_wf, 
equal_wf, 
radd_functionality, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rmul-identity1, 
rinv1, 
rmul_functionality, 
req_transitivity, 
req_functionality, 
rsum-split-first, 
rsub_functionality, 
rabs_functionality, 
rleq_functionality, 
req_weakening, 
req-iff-rsub-is-0, 
itermSubtract_wf, 
rinv_wf2, 
rnexp_zero_lemma, 
fact0_redex_lemma, 
equal-wf-T-base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
nequal_wf, 
subtype_rel_sets, 
mul_nzero, 
true_wf, 
equal-wf-base, 
int_subtype_base, 
subtype_base_sq, 
int_entire_a, 
radd_wf, 
rnexp_wf, 
rmul_wf, 
rsum_wf, 
rless-int-fractions2, 
rmin_strict_ub, 
Taylor-remainder_wf, 
mul_bounds_1b, 
member_rccint_lemma, 
squash_wf, 
less_than'_wf, 
sq_stable__rleq, 
sq_stable__all, 
sq_stable__rless, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
rless-int, 
rsub_wf, 
i-approx_wf, 
sq_stable__and, 
mul_nat_plus, 
icompact_wf, 
rmin-rleq-rmax, 
rccint-icompact, 
less_than_wf, 
rccint_wf, 
continuous_functionality_wrt_subinterval, 
function-is-continuous, 
rmax-i-member, 
sq_stable__i-member, 
rmin-i-member, 
rmax_wf, 
rmin_wf, 
rcc-subinterval, 
small-reciprocal-real, 
rleq_transitivity, 
r-bound-property, 
int_seg_properties, 
rmaximum_ub, 
rleq_wf, 
fact-non-zero, 
rneq-int, 
false_wf, 
int_seg_subtype_nat, 
fact_wf, 
rdiv_wf, 
rabs_wf, 
sq_stable__less_than, 
rmaximum_wf, 
r-bound_wf, 
interval_wf, 
iproper_wf, 
nat_plus_wf, 
rfun_wf, 
set_wf, 
subtype_rel_self, 
req_wf, 
all_wf, 
i-member_wf, 
lelt_wf, 
decidable__lt, 
int_seg_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
finite-deriv-seq_wf, 
real_wf, 
int-to-real_wf, 
rless_wf
Rules used in proof : 
promote_hyp, 
equalityElimination, 
universeEquality, 
cumulativity, 
instantiate, 
addLevel, 
applyLambdaEquality, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
independent_pairEquality, 
inrFormation, 
multiplyEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
functionEquality, 
setEquality, 
productElimination, 
because_Cache, 
functionExtensionality, 
applyEquality, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}
                            ((r0  <  e)
                            {}\mRightarrow{}  (\mexists{}d:\mBbbR{}
                                      ((r0  <  d)
                                      \mwedge{}  ((|a  -  b|  <  d)  {}\mRightarrow{}  (|Taylor-remainder(I;n;b;a;k,x.F[k;x])|  \mleq{}  e)))))))))
Date html generated:
2018_05_22-PM-02_48_48
Last ObjectModification:
2018_05_21-AM-01_22_31
Theory : reals
Home
Index