Nuprl Lemma : not_functionality_wrt_implies

[P,Q:ℙ].  {(¬P)  Q)} supposing {P  Q}


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} not: ¬A rev_implies:  Q implies:  Q
Definitions unfolded in proof :  not: ¬A guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q false: False prop: rev_implies:  Q
Lemmas referenced :  false_wf rev_implies_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut lambdaFormation hypothesis hypothesisEquality functionEquality extract_by_obid sqequalHypSubstitution lambdaEquality dependent_functionElimination thin because_Cache cumulativity Error :functionIsType,  Error :universeIsType,  isect_memberEquality isectElimination equalityTransitivity equalitySymmetry Error :inhabitedIsType,  voidElimination universeEquality independent_functionElimination

Latex:
\mforall{}[P,Q:\mBbbP{}].    \{(\mneg{}P)  {}\mRightarrow{}  (\mneg{}Q)\}  supposing  \{P  \mLeftarrow{}{}  Q\}



Date html generated: 2019_06_20-AM-11_17_08
Last ObjectModification: 2018_09_26-AM-10_24_39

Theory : core_2


Home Index