Nuprl Lemma : continuous_functionality_wrt_subinterval
∀I:Interval. ∀[f:I ⟶ℝ]. ∀J:Interval. (J ⊆ I  
⇒ f[x] continuous for x ∈ I 
⇒ f[x] continuous for x ∈ J)
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
subinterval: I ⊆ J 
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
continuous: f[x] continuous for x ∈ I
, 
member: t ∈ T
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
subinterval: I ⊆ J 
Lemmas referenced : 
compact-subinterval, 
i-approx_wf, 
icompact_wf, 
subinterval_transitivity, 
istype-less_than, 
i-approx-is-subinterval, 
nat_plus_wf, 
continuous_wf, 
real_wf, 
i-member_wf, 
subinterval_wf, 
rfun_wf, 
interval_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rless_wf, 
int-to-real_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
i-member-approx
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
isectElimination, 
hypothesis, 
universeIsType, 
independent_functionElimination, 
because_Cache, 
natural_numberEquality, 
productElimination, 
setIsType, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
independent_pairFormation, 
productIsType, 
functionIsType, 
closedConclusion, 
independent_isectElimination, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}I:Interval
    \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}J:Interval.  (J  \msubseteq{}  I    {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  J)
Date html generated:
2019_10_30-AM-07_43_55
Last ObjectModification:
2018_11_12-AM-10_54_06
Theory : reals
Home
Index