Nuprl Lemma : continuous_functionality_wrt_subinterval

I:Interval. ∀[f:I ⟶ℝ]. ∀J:Interval. (J ⊆ I   f[x] continuous for x ∈  f[x] continuous for x ∈ J)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I subinterval: I ⊆  rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q continuous: f[x] continuous for x ∈ I member: t ∈ T prop: nat_plus: + exists: x:A. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] sq_exists: x:A [B[x]] and: P ∧ Q cand: c∧ B uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subinterval: I ⊆ 
Lemmas referenced :  compact-subinterval i-approx_wf icompact_wf subinterval_transitivity istype-less_than i-approx-is-subinterval nat_plus_wf continuous_wf real_wf i-member_wf subinterval_wf rfun_wf interval_wf rleq_wf rabs_wf rsub_wf rless_wf int-to-real_wf rdiv_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf i-member-approx
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality_alt isectElimination hypothesis universeIsType independent_functionElimination because_Cache natural_numberEquality productElimination setIsType sqequalRule lambdaEquality_alt applyEquality inhabitedIsType independent_pairFormation productIsType functionIsType closedConclusion independent_isectElimination inrFormation_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}I:Interval
    \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}J:Interval.  (J  \msubseteq{}  I    {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  J)



Date html generated: 2019_10_30-AM-07_43_55
Last ObjectModification: 2018_11_12-AM-10_54_06

Theory : reals


Home Index