Nuprl Lemma : rsum-one
∀[n,m:ℤ]. (Σ{r1 | n≤k≤m} = if m <z n then r0 else r((m - n) + 1) fi )
Proof
Definitions occuring in Statement :
rsum: Σ{x[k] | n≤k≤m}
,
req: x = y
,
int-to-real: r(n)
,
ifthenelse: if b then t else f fi
,
lt_int: i <z j
,
uall: ∀[x:A]. B[x]
,
subtract: n - m
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
req_witness,
rsum_wf,
int-to-real_wf,
int_seg_wf,
ifthenelse_wf,
lt_int_wf,
real_wf,
subtract_wf,
rmul_wf,
eqtt_to_assert,
assert_of_lt_int,
rmul-zero,
eqff_to_assert,
equal_wf,
bool_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
rmul-identity1,
req_functionality,
rsum-constant2,
req_weakening
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
natural_numberEquality,
hypothesis,
addEquality,
independent_functionElimination,
intEquality,
isect_memberEquality,
because_Cache,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
dependent_pairFormation,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
dependent_functionElimination,
instantiate,
voidElimination
Latex:
\mforall{}[n,m:\mBbbZ{}]. (\mSigma{}\{r1 | n\mleq{}k\mleq{}m\} = if m <z n then r0 else r((m - n) + 1) fi )
Date html generated:
2017_10_03-AM-08_59_53
Last ObjectModification:
2017_07_28-AM-07_39_15
Theory : reals
Home
Index