Nuprl Lemma : rsum-constant2

[n,m:ℤ]. ∀[a:ℝ].  {a n≤k≤m} (a if m <then r0 else r((m n) 1) fi ))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y rmul: b int-to-real: r(n) real: ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  subtract: m assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A false: False ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] top: Top has-valueall: has-valueall(a) subtype_rel: A ⊆B callbyvalueall: callbyvalueall prop: has-value: (a)↓ rsum: Σ{x[k] n≤k≤m} rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  add-commutes add-swap minus-one-mul add-associates radd-list-one rmul_functionality int_formula_prop_not_lemma intformnot_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat assert_of_lt_int eqtt_to_assert bool_wf length-from-upto subtype_rel_list length_wf list-subtype-bag top_wf map_wf_bag radd-list_wf-bag int_subtype_base evalall-sqequal from-upto_wf less_than_wf le_wf map_wf real-list-has-valueall int-value-type value-type-has-value req_weakening rsum-constant req_functionality subtract_wf int-to-real_wf real_wf lt_int_wf ifthenelse_wf rmul_wf int_seg_wf rsum_wf req_witness
Rules used in proof :  minusEquality multiplyEquality cumulativity instantiate promote_hyp independent_pairFormation dependent_functionElimination int_eqEquality dependent_pairFormation approximateComputation equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation voidEquality voidElimination applyEquality baseClosed closedConclusion baseApply productEquality setEquality callbyvalueReduce productElimination independent_isectElimination intEquality because_Cache isect_memberEquality independent_functionElimination hypothesis natural_numberEquality addEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (\mSigma{}\{a  |  n\mleq{}k\mleq{}m\}  =  (a  *  if  m  <z  n  then  r0  else  r((m  -  n)  +  1)  fi  ))



Date html generated: 2018_05_22-PM-01_52_06
Last ObjectModification: 2018_05_21-AM-00_12_35

Theory : reals


Home Index