Nuprl Lemma : rsum-constant2
∀[n,m:ℤ]. ∀[a:ℝ].  (Σ{a | n≤k≤m} = (a * if m <z n then r0 else r((m - n) + 1) fi ))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
subtract: n - m
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
false: False
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
top: Top
, 
has-valueall: has-valueall(a)
, 
subtype_rel: A ⊆r B
, 
callbyvalueall: callbyvalueall, 
prop: ℙ
, 
has-value: (a)↓
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
add-commutes, 
add-swap, 
minus-one-mul, 
add-associates, 
radd-list-one, 
rmul_functionality, 
int_formula_prop_not_lemma, 
intformnot_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
length-from-upto, 
subtype_rel_list, 
length_wf, 
list-subtype-bag, 
top_wf, 
map_wf_bag, 
radd-list_wf-bag, 
int_subtype_base, 
evalall-sqequal, 
from-upto_wf, 
less_than_wf, 
le_wf, 
map_wf, 
real-list-has-valueall, 
int-value-type, 
value-type-has-value, 
req_weakening, 
rsum-constant, 
req_functionality, 
subtract_wf, 
int-to-real_wf, 
real_wf, 
lt_int_wf, 
ifthenelse_wf, 
rmul_wf, 
int_seg_wf, 
rsum_wf, 
req_witness
Rules used in proof : 
minusEquality, 
multiplyEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
independent_pairFormation, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
voidEquality, 
voidElimination, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
productEquality, 
setEquality, 
callbyvalueReduce, 
productElimination, 
independent_isectElimination, 
intEquality, 
because_Cache, 
isect_memberEquality, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
addEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (\mSigma{}\{a  |  n\mleq{}k\mleq{}m\}  =  (a  *  if  m  <z  n  then  r0  else  r((m  -  n)  +  1)  fi  ))
Date html generated:
2018_05_22-PM-01_52_06
Last ObjectModification:
2018_05_21-AM-00_12_35
Theory : reals
Home
Index