Nuprl Lemma : radd-list-one

[L:Top List]. (radd-list(map(λk.r1;L)) r(||L||))


Proof




Definitions occuring in Statement :  req: y radd-list: radd-list(L) int-to-real: r(n) length: ||as|| map: map(f;as) list: List uall: [x:A]. B[x] top: Top lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q all: x:A. B[x] top: Top prop: listp: List+ uiff: uiff(P;Q) and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_induction top_wf req_wf radd-list_wf-bag map_wf_bag real_wf int-to-real_wf list-subtype-bag length_wf list_wf map_nil_lemma length_of_nil_lemma radd_list_nil_lemma req_weakening map_cons_lemma length_of_cons_lemma req_witness cons_wf_listp map_wf subtype_rel_set bag_wf less_than_wf radd_wf req-int decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermConstant_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf uiff_transitivity req_functionality req_transitivity radd-list-cons radd_functionality radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis sqequalRule lambdaEquality natural_numberEquality hypothesisEquality applyEquality because_Cache independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation rename addEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[L:Top  List].  (radd-list(map(\mlambda{}k.r1;L))  =  r(||L||))



Date html generated: 2017_10_02-PM-07_16_04
Last ObjectModification: 2017_07_28-AM-07_20_49

Theory : reals


Home Index