Nuprl Lemma : radd-list-one
∀[L:Top List]. (radd-list(map(λk.r1;L)) = r(||L||))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd-list: radd-list(L)
, 
int-to-real: r(n)
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
listp: A List+
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
top_wf, 
req_wf, 
radd-list_wf-bag, 
map_wf_bag, 
real_wf, 
int-to-real_wf, 
list-subtype-bag, 
length_wf, 
list_wf, 
map_nil_lemma, 
length_of_nil_lemma, 
radd_list_nil_lemma, 
req_weakening, 
map_cons_lemma, 
length_of_cons_lemma, 
req_witness, 
cons_wf_listp, 
map_wf, 
subtype_rel_set, 
bag_wf, 
less_than_wf, 
radd_wf, 
req-int, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
radd-list-cons, 
radd_functionality, 
radd-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
addEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[L:Top  List].  (radd-list(map(\mlambda{}k.r1;L))  =  r(||L||))
Date html generated:
2017_10_02-PM-07_16_04
Last ObjectModification:
2017_07_28-AM-07_20_49
Theory : reals
Home
Index