Nuprl Lemma : map_wf_bag
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[bs:bag(A)].  (map(f;bs) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
bag-map: bag-map(f;bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
bag-map_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[bs:bag(A)].    (map(f;bs)  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-07_44_33
Last ObjectModification:
2015_12_27-AM-11_11_15
Theory : general
Home
Index