Nuprl Lemma : map_wf_bag

[A,B:Type]. ∀[f:A ⟶ B]. ∀[bs:bag(A)].  (map(f;bs) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag: bag(T) map: map(f;as) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  bag-map: bag-map(f;bs) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  bag-map_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[bs:bag(A)].    (map(f;bs)  \mmember{}  bag(B))



Date html generated: 2016_05_15-PM-07_44_33
Last ObjectModification: 2015_12_27-AM-11_11_15

Theory : general


Home Index