Nuprl Lemma : exp_preserves_le

[n,x,y:ℕ].  x^n ≤ y^n supposing x ≤ y


Proof




Definitions occuring in Statement :  exp: i^n nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q exp: i^n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf exp_wf2 le_wf nat_wf exp0_lemma false_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int primrec-unroll mul_preserves_le exp_wf4 itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination equalityElimination promote_hyp instantiate cumulativity multiplyEquality

Latex:
\mforall{}[n,x,y:\mBbbN{}].    x\^{}n  \mleq{}  y\^{}n  supposing  x  \mleq{}  y



Date html generated: 2017_04_17-AM-09_45_03
Last ObjectModification: 2017_02_27-PM-05_39_20

Theory : num_thy_1


Home Index