Nuprl Lemma : infinite-deriv-seq_wf

[I:Interval]. ∀[F:ℕ ⟶ I ⟶ℝ].  (infinite-deriv-seq(I;i,x.F[i;x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x]) rfun: I ⟶ℝ interval: Interval nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  and: P ∧ Q top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: so_apply: x[s] prop: subtype_rel: A ⊆B so_apply: x[s1;s2] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2x.t[x] infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  all_wf nat_wf derivative_wf rfun_wf real_wf i-member_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf interval_wf
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination dependent_functionElimination natural_numberEquality rename setElimination addEquality dependent_set_memberEquality setEquality applyEquality hypothesisEquality lambdaEquality hypothesis thin isectElimination sqequalHypSubstitution lemma_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  \mforall{}[F:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].    (infinite-deriv-seq(I;i,x.F[i;x])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-10_28_13
Last ObjectModification: 2016_01_17-AM-00_25_56

Theory : reals


Home Index