Step
*
1
of Lemma
Taylor-theorem-case2
.....assertion.....
1. I : Interval
2. iproper(I)
3. n : ℕ+
4. F : ℕn + 2 ⟶ I ⟶ℝ
5. a : {a:ℝ| a ∈ I}
6. b : {a:ℝ| a ∈ I}
7. ∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : ℝ
10. r0 < e
⊢ ∃M:ℕ+. ∀k:ℕ+n + 1. (|(F[k;a]/r((k)!))| ≤ r(M))
BY
{ (With ⌜r-bound(rmaximum(1;n;k.|(F[k;a]/r((k)!))|))⌝ (D 0)⋅ THEN Auto) }
1
1. I : Interval
2. iproper(I)
3. n : ℕ+
4. F : ℕn + 2 ⟶ I ⟶ℝ
5. a : {a:ℝ| a ∈ I}
6. b : {a:ℝ| a ∈ I}
7. ∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : ℝ
10. r0 < e
11. k : ℕ+n + 1
⊢ |(F[k;a]/r((k)!))| ≤ r(r-bound(rmaximum(1;n;k.|(F[k;a]/r((k)!))|)))
Latex:
Latex:
.....assertion.....
1. I : Interval
2. iproper(I)
3. n : \mBbbN{}\msupplus{}
4. F : \mBbbN{}n + 2 {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
5. a : \{a:\mBbbR{}| a \mmember{} I\}
6. b : \{a:\mBbbR{}| a \mmember{} I\}
7. \mforall{}k:\mBbbN{}n + 2. \mforall{}x,y:\{a:\mBbbR{}| a \mmember{} I\} . ((x = y) {}\mRightarrow{} (F[k;x] = F[k;y]))
8. finite-deriv-seq(I;n + 1;i,x.F[i;x])
9. e : \mBbbR{}
10. r0 < e
\mvdash{} \mexists{}M:\mBbbN{}\msupplus{}. \mforall{}k:\mBbbN{}\msupplus{}n + 1. (|(F[k;a]/r((k)!))| \mleq{} r(M))
By
Latex:
(With \mkleeneopen{}r-bound(rmaximum(1;n;k.|(F[k;a]/r((k)!))|))\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
Home
Index