Step * 1 of Lemma adjacent-partition-points


1. Interval
2. icompact(I)
3. partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| 1]
     (frs-non-dec(full-partition(I;p))  r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| 1. r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p)
⊢ ((¬0 < ||p||)  r0≤right-endpoint(I) left-endpoint(I)≤partition-mesh(I;p))
∧ (0 < ||p||
   (r0≤p[0] left-endpoint(I)≤partition-mesh(I;p)
     ∧ (∀i:ℕ||p|| 1. r0≤p[i 1] p[i]≤partition-mesh(I;p))
     ∧ r0≤right-endpoint(I) last(p)≤partition-mesh(I;p)))
BY
((InstHyp [⌜0⌝(-1)⋅ THENA Auto')
   THEN RepUR ``full-partition`` (-1)
   THEN (InstHyp [⌜||p||⌝(-2)⋅ THENA Auto')
   THEN RepUR ``full-partition`` (-1)) }

1
1. Interval
2. icompact(I)
3. partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| 1]
     (frs-non-dec(full-partition(I;p))  r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| 1. r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p)
7. r0≤[right-endpoint(I)][0] left-endpoint(I)≤partition-mesh(I;p)
8. r0≤[left-endpoint(I) (p [right-endpoint(I)])][||p|| 1] [left-endpoint(I) 
                                                                   (p [right-endpoint(I)])][||p||]≤partition-mesh(I;p)
⊢ ((¬0 < ||p||)  r0≤right-endpoint(I) left-endpoint(I)≤partition-mesh(I;p))
∧ (0 < ||p||
   (r0≤p[0] left-endpoint(I)≤partition-mesh(I;p)
     ∧ (∀i:ℕ||p|| 1. r0≤p[i 1] p[i]≤partition-mesh(I;p))
     ∧ r0≤right-endpoint(I) last(p)≤partition-mesh(I;p)))


Latex:


Latex:

1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  \mforall{}[i:\mBbbN{}||full-partition(I;p)||  -  1]
          (frs-non-dec(full-partition(I;p))
          {}\mRightarrow{}  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p))
5.  frs-non-dec(full-partition(I;p))
6.  \mforall{}i:\mBbbN{}||p||  +  1.  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p)
\mvdash{}  ((\mneg{}0  <  ||p||)  {}\mRightarrow{}  r0\mleq{}right-endpoint(I)  -  left-endpoint(I)\mleq{}partition-mesh(I;p))
\mwedge{}  (0  <  ||p||
    {}\mRightarrow{}  (r0\mleq{}p[0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
          \mwedge{}  (\mforall{}i:\mBbbN{}||p||  -  1.  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p))
          \mwedge{}  r0\mleq{}right-endpoint(I)  -  last(p)\mleq{}partition-mesh(I;p)))


By


Latex:
((InstHyp  [\mkleeneopen{}0\mkleeneclose{}]  (-1)\mcdot{}  THENA  Auto')
  THEN  RepUR  ``full-partition``  (-1)
  THEN  (InstHyp  [\mkleeneopen{}||p||\mkleeneclose{}]  (-2)\mcdot{}  THENA  Auto')
  THEN  RepUR  ``full-partition``  (-1))




Home Index