Step
*
of Lemma
better-continuity-for-reals
∀x:ℝ. ∃x':{x':ℝ| x' = x} . ∀g:ℕ ⟶ ℝ. (lim n→∞.g n = x 
⇒ (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝ| P z = P x'} . (∃n:{ℕ| (z = (g n))})))
BY
{ ((InstLemma `connectedness-main-lemma` [] THEN ParallelLast') THEN D 0 With ⌜accelerate(3;x)⌝  THEN Auto) }
Latex:
Latex:
\mforall{}x:\mBbbR{}
    \mexists{}x':\{x':\mBbbR{}|  x'  =  x\} 
      \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.g  n  =  x  {}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}z:\{z:\mBbbR{}|  P  z  =  P  x'\}  .  (\mexists{}n:\{\mBbbN{}|  (z  =  (g  n))\})))
By
Latex:
((InstLemma  `connectedness-main-lemma`  []  THEN  ParallelLast')
  THEN  D  0  With  \mkleeneopen{}accelerate(3;x)\mkleeneclose{} 
  THEN  Auto)
Home
Index