Nuprl Lemma : better-continuity-for-reals
∀x:ℝ. ∃x':{x':ℝ| x' = x} . ∀g:ℕ ⟶ ℝ. (lim n→∞.g n = x 
⇒ (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝ| P z = P x'} . (∃n:{ℕ| (z = (g n))})))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
connectedness-main-lemma, 
accelerate-req, 
less_than_wf, 
req_wf, 
all_wf, 
nat_wf, 
real_wf, 
converges-to_wf, 
bool_wf, 
exists_wf, 
equal_wf, 
sq_exists_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_pairFormation, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productElimination, 
because_Cache, 
functionEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
setElimination, 
rename
Latex:
\mforall{}x:\mBbbR{}
    \mexists{}x':\{x':\mBbbR{}|  x'  =  x\} 
      \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.g  n  =  x  {}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}z:\{z:\mBbbR{}|  P  z  =  P  x'\}  .  (\mexists{}n:\{\mBbbN{}|  (z  =  (g  n))\})))
Date html generated:
2017_10_03-AM-10_09_45
Last ObjectModification:
2017_09_13-PM-03_26_02
Theory : reals
Home
Index