Step
*
2
1
1
2
1
2
1
1
of Lemma
closures-meet-sq'
1. P : ℝ ⟶ ℙ
2. Q : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. Q b0
6. a0 < b0
7. c : ℝ
8. r0 ≤ c
9. c < r1
10. s : ℕ ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a < b)} )
11. ∀n:ℕ
(((fst(s[n])) ≤ (fst(s[n + 1])))
∧ ((snd(s[n + 1])) ≤ (snd(s[n])))
∧ (((snd(s[n + 1])) - fst(s[n + 1])) ≤ (((snd(s[n])) - fst(s[n])) * c)))
12. n : ℤ
13. 0 < n
14. r0 ≤ ((snd(s[n - 1])) - fst(s[n - 1]))
15. (fst(s[n - 1])) ≤ (fst(s[n]))
16. (snd(s[n])) ≤ (snd(s[n - 1]))
17. ((snd(s[n])) - fst(s[n])) ≤ (((snd(s[n - 1])) - fst(s[n - 1])) * c)
18. v : ℝ
19. ((snd(s[n - 1])) - fst(s[n - 1])) = v ∈ ℝ
20. v1 : ℝ
21. ((snd(s[0])) - fst(s[0])) = v1 ∈ ℝ
22. (c * v) ≤ (c^n - 1 * c * v1)
⊢ (v * c) ≤ (v1 * c^n)
BY
{ ((RWO "rnexp-req" 0 THEN Auto)⋅ THEN AutoSplit) }
Latex:
Latex:
1. P : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. Q : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. a0 : \{a:\mBbbR{}| P a\}
4. b0 : \mBbbR{}
5. Q b0
6. a0 < b0
7. c : \mBbbR{}
8. r0 \mleq{} c
9. c < r1
10. s : \mBbbN{} {}\mrightarrow{} (a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a < b)\} )
11. \mforall{}n:\mBbbN{}
(((fst(s[n])) \mleq{} (fst(s[n + 1])))
\mwedge{} ((snd(s[n + 1])) \mleq{} (snd(s[n])))
\mwedge{} (((snd(s[n + 1])) - fst(s[n + 1])) \mleq{} (((snd(s[n])) - fst(s[n])) * c)))
12. n : \mBbbZ{}
13. 0 < n
14. r0 \mleq{} ((snd(s[n - 1])) - fst(s[n - 1]))
15. (fst(s[n - 1])) \mleq{} (fst(s[n]))
16. (snd(s[n])) \mleq{} (snd(s[n - 1]))
17. ((snd(s[n])) - fst(s[n])) \mleq{} (((snd(s[n - 1])) - fst(s[n - 1])) * c)
18. v : \mBbbR{}
19. ((snd(s[n - 1])) - fst(s[n - 1])) = v
20. v1 : \mBbbR{}
21. ((snd(s[0])) - fst(s[0])) = v1
22. (c * v) \mleq{} (c\^{}n - 1 * c * v1)
\mvdash{} (v * c) \mleq{} (v1 * c\^{}n)
By
Latex:
((RWO "rnexp-req" 0 THEN Auto)\mcdot{} THEN AutoSplit)
Home
Index