Step
*
1
2
of Lemma
compact-dist-zero-in-complete
1. X : Type
2. d : metric(X)
3. mcomplete(X with d)
4. A : Type
5. metric-subspace(X;d;A)
6. m-closed-subspace(X;d;A)
⇐⇒ mcomplete(A with d)
7. (A ⊆r X) ∧ respects-equality(X;A)
8. c : mcompact(A;d)
9. x : X
10. dist(x;A) = r0
⇐⇒ ∀n:ℕ+. ∃a:A. (mdist(d;x;a) < (r1/r(n)))
11. x ∈ A
⊢ ∀n:ℕ+. ∃a:A. (mdist(d;x;a) < (r1/r(n)))
BY
{ ((D 0 THENA Auto) THEN D 0 With ⌜x⌝ THEN RWW "mdist-same" 0 THEN Auto) }
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. mcomplete(X with d)
4. A : Type
5. metric-subspace(X;d;A)
6. m-closed-subspace(X;d;A) \mLeftarrow{}{}\mRightarrow{} mcomplete(A with d)
7. (A \msubseteq{}r X) \mwedge{} respects-equality(X;A)
8. c : mcompact(A;d)
9. x : X
10. dist(x;A) = r0 \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}a:A. (mdist(d;x;a) < (r1/r(n)))
11. x \mmember{} A
\mvdash{} \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}a:A. (mdist(d;x;a) < (r1/r(n)))
By
Latex:
((D 0 THENA Auto) THEN D 0 With \mkleeneopen{}x\mkleeneclose{} THEN RWW "mdist-same" 0 THEN Auto)
Home
Index